第五章,图像复原
1,什么是图像复原?
图像复原是利用某种先验知识来重建或者复原被退化的图像。一般来讲,图像复原就是将退化模型化,并且采用相反的过程进行处理,以便复原出原图像。
2,图像退化模型表达形式?
退化过程模型化之后为一个退化函数和一个加性噪声项。
g(x,y)=h(x,y)*f(x,y)+η(x,y)等价形式:G(u,v)=H(u,v)F(u,v)+N(u,v)
3,当退化过程完全由噪声项引起时过程表达形式?
g(x,y)=f(x,y)+η(x,y)和等价形式G(u,v)=F(u,v)+N(u,v)
4,均值滤波器的形式和性质?
①算术均值滤波器复原表达式:
其中表示中心点在(x,y)尺寸为m*n的矩形窗口小邻域中像素坐标组。表示被复原点处的估计值。g(s,t)表示被污染的像素点值。
算术均值滤波器的恢复图像过程就是将定义的区域内像素点平均值代替被干扰的图像g(x,y)中像素点的值。
②几何均值滤波器复原表达式:
窗口内像素点值得乘积的1/mn次幂。
③谐波均值滤波器复原表达式:
谐波均值滤波器对去除盐噪声更好,但是不适用于胡椒噪声。
④逆谐波均值滤波器复原表达式:
其中Q为滤波器的阶数,适合在实际的过程中消除椒盐噪声的影响。
当Q值为正数时,滤波器适用于消除“胡椒噪声”;当Q值为负数时,滤波器适用于消除“盐噪声”;但是不能够同时消除两种噪声,当Q=0时,逆谐波均值滤波器退化为谐波均值滤波器。
5,顺序统计滤波器?
①中值滤波器:
将邻域内中值代替像素值。
②最大值和最小值滤波器:
在发现图像中的亮点时很有效,有助于去除“胡椒噪声”。
发现图像中的暗点很有效,有助于去除“盐噪声”。
③中点滤波器:
结合了顺序统计和求平均,有助于消除高斯和均匀分布随机噪声。
④阿尔法均值滤波器:
去除邻域Sxy内,g(s,t)灰度值为最高值d/2个和最小值的d/2,剩余mn-d个像素点。
6,带阻滤波器?
①理想带阻滤波器:
D(u,v)为到中心化频率矩形中心的距离,W为阻带频带宽度。
②n阶巴特沃斯带阻滤波器:
③高斯带阻滤波器:
7,带通滤波器?
与带阻滤波器相反的操作。
8,最小均方差滤波器(维纳滤波器)表达式和公式含义?
H(u,v)为退化函数;的复共轭。;;
为噪声的功率谱;为未退化的图像的功率谱。
参考文献:
《数字图像处理第二版(冈萨雷斯)》