10.求自守数

一、题目描述

自守数是指一个数的平方的尾数等于该数自身的自然数。例如:25^2 = 625,76^2 = 5776,9376^2 = 87909376。请求出n以内的自守数的个数.

功能: 求出n以内的自守数的个数

输入参数:int n

返回值:n以内自守数的数量。

本题有多组输入数据,请使用while(cin>>)等方式处理

示例1

输入:2000

输出:8

二、解题思路

2.1 如何判断某个整数是自守数?

观察以下各式:

25^2 = 625,  625%100=25

76^2 = 5776,5776%100=76

9376^2 = 87909376,87909376%10000=9376

......

可以归纳出:

if((num*num)%(10^n)==mun)
    num是自守数;

关键是如何求得正整数的位数n,下面介绍求正整数位数n的算法。

2.2.求整数的位数的算法

#include<iostream>
#include<math.h>
using namespace std;
int main()
{
	int num = 65539;
	int n = 1 + (int)log10(num);
	cout<<n<<endl;
	return 0;
}

三、求解代码

#include<iostream>
#include<math.h>
using namespace std;
int main()
{
	int num,N;
	while(cin>>num)
	{
		int j=1; 
		for(int i=1;i<=num;i++)
		{
		    N = 1 + (int)log10(i);  //求整数的位数 
			if((i*i)%(int(pow(10,N)))==i) //pow()默认为double型,需要转化为int型 
				j++;
		}
		cout<<j<<endl;
	}
	return 0;
}

运行结果:

2000
8

四、代码解读

有3点需要注意:

1.统计个数j的位置,需要放在while输入整数之后。

2.统计个数j的初值为1,因为0也是自守数,但因为log10(0)无意义,故将j初值赋为1。

3.C++中不能用x^n来表示乘方运算,而应该使用函数pow(x,n),其中pow为double型,注意转化为int型。

五、其他

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值