一、题目描述
自守数是指一个数的平方的尾数等于该数自身的自然数。例如:25^2 = 625,76^2 = 5776,9376^2 = 87909376。请求出n以内的自守数的个数.
功能: 求出n以内的自守数的个数
输入参数:int n
返回值:n以内自守数的数量。
本题有多组输入数据,请使用while(cin>>)等方式处理
示例1
输入:2000
输出:8
二、解题思路
2.1 如何判断某个整数是自守数?
观察以下各式:
25^2 = 625, 625%100=25
76^2 = 5776,5776%100=76
9376^2 = 87909376,87909376%10000=9376
......
可以归纳出:
if((num*num)%(10^n)==mun)
num是自守数;
关键是如何求得正整数的位数n,下面介绍求正整数位数n的算法。
2.2.求整数的位数的算法
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
int num = 65539;
int n = 1 + (int)log10(num);
cout<<n<<endl;
return 0;
}
三、求解代码
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
int num,N;
while(cin>>num)
{
int j=1;
for(int i=1;i<=num;i++)
{
N = 1 + (int)log10(i); //求整数的位数
if((i*i)%(int(pow(10,N)))==i) //pow()默认为double型,需要转化为int型
j++;
}
cout<<j<<endl;
}
return 0;
}
运行结果:
2000
8
四、代码解读
有3点需要注意:
1.统计个数j的位置,需要放在while输入整数之后。
2.统计个数j的初值为1,因为0也是自守数,但因为log10(0)无意义,故将j初值赋为1。
3.C++中不能用x^n来表示乘方运算,而应该使用函数pow(x,n),其中pow为double型,注意转化为int型。