Android使用MediaPipe + FFmpeg生成绿幕视频

前言

事情的起因是最近在研究利用FFmpeg替换绿幕视频的背景,当然这个并不是本文要探讨的问题,主要是在这个过程中笔者在思考假设我现在拥有的素材背景不是纯色的,有没有什么方案可以将人抠出来呢?ps:类似的场景比较常见的应该是视频聊天时的背景替换吧。

于是就想到的机器学习,利用模型抠人像。通过GPT和百度等途径了解到Google的MediaPipe提供了一套人像分割的能力。所以本文主要记录的是笔者通过MediaPipe进行人像分割,再对每一帧进行背景替换,使用FFmpeg合成视频,最终生成一个绿幕视频这么一个过程。

MediaPipe

细节的东西就不介绍了,因为咱不熟悉,大家可以通过MediaPipe官网了解。

对于人像分割,MediaPipe也给出了开发引导,也可以通过MediaPipe Studio在线尝试效果。

Python实现

可以先PC上通过Python运行看看效果,通过询问GPT再稍作修改的python脚本是长这样的:

import cv2
import numpy as np
import mediapipe as mp
import os

from mediapipe.tasks import python
from mediapipe.tasks.python import vision

input_path = "input.mp4"
output_video_path = "output.mp4"

base_options = python.BaseOptions(model_asset_path='selfie_segmenter.tflite')
options = vision.ImageSegmenterOptions(base_options=base_options,
                                       running_mode=vision.RunningMode.VIDEO,
                                       output_category_mask=True)

# 创建保存分割后帧的目录
os.makedirs("temp_frames", exist_ok=True)
os.makedirs("segmented_frames", exist_ok=True)

cap = cv2.VideoCapture(input_path)
# 获取视频的帧率和大小
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

print("fps: {}, width: {}, height: {}".format(fps, width, height))

frame_number = 0

segmenter = vision.ImageSegmenter.create_from_options(options)

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # 保存帧为临时图像文件
    frame_path = f"temp_frames/temp_frame_{frame_number}.jpg"
    # print("frame: {}".format(frame))
    # 视频文件的当前位置,以ms为单位
    ts = cap
### 回答1: Unity MediaPipe是一个用于在Android平台上进行媒体处理的工具。它是由Google开发的,可用于创建具有复杂媒体处理功能的应用程序。 Unity MediaPipe提供了一系列用于图像和视频处理的功能库,包括人脸识别、姿态估计、手势识别、目标追踪和自定义机器学习模型等。借助这些功能,开发人员可以轻松地将媒体处理功能添加到他们的Android应用程序中。 Unity MediaPipe支持通过Unity引擎进行开发,这意味着开发人员可以使用Unity引擎的强大功能和易用性来创建媒体处理应用程序。同时,Unity MediaPipe还提供了与Unity开发环境的无缝集成,使开发人员可以方便地在Unity中进行开发、测试和部署他们的应用程序。 对于开发人员来说,使用Unity MediaPipe进行Android媒体处理具有许多优势。首先,它具有丰富的功能库,可用于处理各种媒体类型,从而满足不同应用程序的需求。其次,它与Unity引擎的集成简化了开发过程,提供了更好的开发体验。最后,Unity MediaPipe是一个成熟的工具,由Google支持,这意味着开发人员可以放心使用,并积极参与到社区中。 综上所述,Unity MediaPipe是一个用于在Android平台上进行媒体处理的强大工具,它提供了丰富的功能和与Unity引擎的无缝集成,使开发人员能够轻松地创建具有复杂媒体处理功能的应用程序。 ### 回答2: Unity Mediapipe Android 是一种可以在Android平台上使用的多媒体处理工具,它集成了Unity游戏引擎和Mediapipe开源框架。Mediapipe是由谷歌开发的一个用于构建多媒体处理流水线的框架,可以用于图像、音频和视频的处理和分析。 Unity Mediapipe Android 提供了一种简单而强大的方式,让开发者可以在Unity中实现多媒体处理和分析的功能。它可以使用Mediapipe中的预训练模型进行图像识别、目标检测、姿势估计等复杂任务。开发者可以通过导入和使用这些模型,快速实现各种多媒体处理的功能。 Unity Mediapipe Android 还提供了丰富的API和工具,让开发者可以自定义和扩展多媒体处理功能。开发者可以使用C#或Unity的脚本语言编写代码,调用Mediapipe的功能,在Unity场景中实现各种多媒体的处理和交互效果。 使用Unity Mediapipe Android,开发者可以开发各种创新的多媒体应用程序。比如,可以开发基于人脸识别的虚拟现实应用,通过识别用户的面部表情和动作,实现互动体验。还可以开发基于音频分析的音乐游戏,通过分析音频的频谱和节奏,生成游戏关卡和音乐效果等。 总结来说,Unity Mediapipe Android 是一种强大而灵活的工具,可以帮助开发者在Android平台上实现各种多媒体处理和分析的功能。它提供了易于使用的API和工具,使开发过程更加简单和高效。无论是建立图像识别、音频分析,还是其他创新的多媒体应用,Unity Mediapipe Android 都是一个很好的选择。 ### 回答3: Unity MediaPipe是一种在Android平台上使用的多媒体处理框架。它允许我们在Unity引擎中利用MediaPipe的功能来处理图像和视频数据。 在Unity MediaPipe中,我们可以使用各种MediaPipe提供的功能,例如人脸检测、关键点识别、姿态估计等。我们可以将这些功能应用于我们的游戏或应用程序中,从而实现一些有趣和创新的效果。 Unity MediaPipe的工作原理是将Android平台上的图像或视频数据传递给MediaPipe处理管道,然后接收处理后的数据并将其渲染到Unity场景中。这样,我们就能够利用MediaPipe的强大功能来进行图像和视频的实时处理。 Unity MediaPipe具有一定的灵活性和可定制性。我们可以根据自己的需求来选择需要用到的MediaPipe功能,并将其集成到我们的项目中。同时,由于Unity本身也具有强大的扩展性,我们还可以通过编写代码来与MediaPipe的功能进行交互和定制,以满足特定的需求。 总结起来,Unity MediaPipe是一个在Android平台上使用的多媒体处理框架。它使我们能够利用MediaPipe的功能来处理图像和视频数据,并将其应用到我们的Unity项目中。通过使用Unity MediaPipe,我们可以实现各种有趣和创新的效果,从而提升我们的游戏或应用程序的交互性和视觉表现力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值