初等数论 2.2 同余

定义:设 m ∈ Z + a , b ∈ Z m\in\Z^+\quad a,b\in\Z mZ+a,bZ,若 a , b a,b a,b m m m除所得到的余数相同,则称 a a a b b b m m m同余,记作 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm).否则称 a a a b b b m m m不同余,记作 a ̸ ≡ b ( m o d m ) a\not\equiv b\pmod m a̸b(modm).
定理:设 m ∈ Z + a , b ∈ Z m\in\Z^+\quad a,b\in\Z mZ+a,bZ,则 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)当且仅当 ∃ q ∈ Z a = m q + b \exists q\in\Z \quad a=mq+b qZa=mq+b当且仅当 m ∣ ( a − b ) m\mid (a-b) m(ab).
定理:同余是一种等价关系.

即1.反身性: a ≡ a ( m o d m ) a\equiv a\pmod m aa(modm).
2.对称性:若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm),则 b ≡ a ( m o d m ) b\equiv a\pmod m ba(modm).
3.传递性:若 a ≡ b ( m o d m ) b ≡ c ( m o d m ) a\equiv b\pmod m \quad b\equiv c\pmod m ab(modm)bc(modm),则 a ≡ c ( m o d m ) a\equiv c\pmod m ac(modm).

定理:关于同余的一些性质:设 a 1 ≡ b 1 ( m o d m ) a 2 ≡ b 2 ( m o d m ) a_1\equiv b_1\pmod m\quad a_2\equiv b_2\pmod m a1b1(modm)a2b2(modm),则
1. a 1 ± a 2 ≡ b 1 ± b 2 ( m o d m ) a_1\pm a_2\equiv b_1\pm b_2\pmod m a1±a2b1±b2(modm).
2. c a 1 ≡ c b 1 ( m o d m ) ∀ c ∈ Z ca_1\equiv cb_1\pmod m\quad \forall c\in\Z ca1cb1(modm)cZ.
3. k a 1 ≡ k b 1 ( m o d k m ) ∀ k ∈ Z + ka_1\equiv kb_1\pmod{km}\quad \forall k\in\Z^+ ka1kb1(modkm)kZ+.
4. a 1 a 2 ≡ b 1 b 2 ( m o d m ) a_1a_2\equiv b_1b_2\pmod m a1a2b1b2(modm).
一般地,若 a k ≡ b k ( m o d m ) k = 1 , 2 , ⋯   , n a_k\equiv b_k\pmod m\quad k=1,2,\cdots,n akbk(modm)k=1,2,,n,则
1. ∑ k = 1 n a k ≡ ∑ k = 1 n b k ( m o d m ) \displaystyle \sum_{k=1}^{n}{a_k}\equiv \sum_{k=1}^{n}{b_k}\pmod m k=1nakk=1nbk(modm).
2. ∏ k = 1 n a k ≡ ∏ k = 1 n b k ( m o d m ) \displaystyle \prod_{k=1}^{n}{a_k}\equiv \prod_{k=1}^{n}{b_k}\pmod m k=1nakk=1nbk(modm).
2’.若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm),则 a n ≡ b n ( m o d m ) ∀ n ∈ Z + a^n\equiv b^n\pmod m \quad \forall n\in\Z^+ anbn(modm)nZ+.
推论:设 a i , b i ( 0 ≤ i ≤ n ) , u , v ∈ Z a_i,b_i(0\le i \le n),u,v\in\Z ai,bi(0in),u,vZ,若 a i ≡ b i ( m o d m ) ∀ 0 ≤ i ≤ n , u ≡ v ( m o d m ) a_i\equiv b_i\pmod m \quad \forall 0\le i \le n,u\equiv v\pmod m aibi(modm)0in,uv(modm),则 ∑ i = 0 m a i u i ≡ ∑ j = 0 n b j v j ( m o d m ) \displaystyle \sum_{i=0}^{m}{a_iu^i}\equiv\sum_{j=0}^{n}{b_jv^j}\pmod m i=0maiuij=0nbjvj(modm)特别地,对于整系数多项式 f ( x ) = a n x n + ⋯ + a 1 x + a 0 f(x)=a_nx^n+\cdots+a_1x+a_0 f(x)=anxn++a1x+a0,有 f ( n ) ≡ f ( v ) ( m o d m ) f(n)\equiv f(v)\pmod m f(n)f(v)(modm).
定理:同余对除法的性质:
1.若 a ≡ b ( m o d m ) , d ∣ m , d > 0 a\equiv b\pmod m,d\mid m,d>0 ab(modm),dm,d>0,则 a ≡ b ( m o d d ) a\equiv b\pmod d ab(modd).
2.若 a 1 a 2 ≡ b 1 b 2 ( m o d m ) , a 2 ≡ b 2 ( m o d m ) a_1a_2\equiv b_1b_2\pmod m,a_2\equiv b_2\pmod m a1a2b1b2(modm),a2b2(modm) ( a 2 , m ) = 1 (a_2,m)=1 (a2,m)=1,则 a 1 ≡ b 1 ( m o d m ) a_1\equiv b_1\pmod m a1b1(modm).
3.若 a ≡ b ( m o d m ) , d ∣ ( a , b , m ) , d > 0 a\equiv b\pmod m,d\mid (a,b,m),d>0 ab(modm),d(a,b,m),d>0,则 a d ≡ b d ( m o d m d ) \dfrac{a}{d}\equiv\dfrac{b}{d}\pmod{\dfrac{m}{d}} dadb(moddm).
4.若 ( a , m ) = 1 (a,m)=1 (a,m)=1,则 ∃ b ∈ Z \exists b\in\Z bZ,使得 a b ≡ 1 ( m o d m ) ab\equiv1\pmod m ab1(modm).
定义:若 ( a , m ) = 1 (a,m)=1 (a,m)=1,称满足 a b ≡ 1 ( m o d m ) ab\equiv1\pmod m ab1(modm)的整数 b b b a a a对模 m m m的逆,记为 a − 1 a^{-1} a1.
定理:同余式 a ≡ b ( m o d m i ) i = 1 , 2 , ⋯   , n a\equiv b\pmod{m_i} \quad i=1,2,\cdots,n ab(modmi)i=1,2,,n同时成立当且仅当 a ≡ b ( m o d [ m 1 , m 2 , ⋯   , m n ] ) a\equiv b\pmod {[m_1,m_2,\cdots,m_n]} ab(mod[m1,m2,,mn]).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值