《初等数论》:同余的概念与性质

同余

定义

定义1:给定一个正整数   m   \,m\, m,把它叫做模,如果用   m   \,m\, m去除任意两个整数   a   \,a\, a   b   \,b\, b所得的余数相同,则称   a , b   \,a,b\, a,b关于模   m   \,m\, m同余,记作   a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod m\, ab(modm);否则称   a , b   \,a,b\, a,b关于模   m   \,m\, m,记作   a ≢ b  ⁣ ⁣ ( m o d m )   \,a \not \equiv b \!\! \pmod m\, ab(modm)

定义2:设   a , b   \,a,b\, a,b为整数,   m   \,m\, m为正整数,若   m ∣ ( a − b )   \,m \mid (a-b)\, m(ab),则称   a , b   \,a,b\, a,b关于模   m   \,m\, m同余,若   m ∤ ( a − b )   \,m \nmid (a-b)\, m(ab),则称   a , b   \,a,b\, a,b关于模   m   \,m\, m不同余。

定理

  a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b\! \! \pmod m\, ab(modm)的充要条件是   m ∣ ( a − b )   \,m \mid (a-b)\, m(ab)   a = b + m k   \,a=b+mk\, a=b+mk

(1) 反身性:   a ≡ b  ⁣ ⁣ ( m o d m )   \,a\equiv b \!\! \pmod m\, ab(modm)
(2) 对称性:若   a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod m\, ab(modm),则   b ≡ a  ⁣ ⁣ ( m o d m )   \,b \equiv a \!\! \pmod m\, ba(modm)
(3) 传递性:若   a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod m\, ab(modm)   b ≡ c  ⁣ ⁣ ( m o d m )   \,b \equiv c \!\! \pmod m\, bc(modm),则   a ≡ c  ⁣ ⁣ ( m o d m )   \,a \equiv c \!\! \pmod m\, ac(modm)

  a 1 ≡ b 1  ⁣ ⁣ ( m o d m )   \,a_1 \equiv b_1 \!\! \pmod m\, a1b1(modm)   a 2 ≡ b 2  ⁣ ⁣ ( m o d m )   \,a_2 \equiv b_2 \!\! \pmod m\, a2b2(modm),则:
(1)   a 1 ± a 2 = b 1 ± b 2  ⁣ ⁣ ( m o d m )   \,a_1 \pm a_2 = b_1 \pm b_2 \!\! \pmod m\, a1±a2=b1±b2(modm)
(2)   a 1 a 2 ≡ b 1 b 2  ⁣ ⁣ ( m o d m )   \,a_1a_2 \equiv b_1b_2 \!\! \pmod m\, a1a2b1b2(modm)
推论:
(3) 若   a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod m\, ab(modm)   n   \,n\, n为正整数,则   a n ≡ b n  ⁣ ⁣ ( m o d m )   \,a^n \equiv b^n \!\! \pmod m\, anbn(modm)
(4) 设   p ( x )   \,p(x)\, p(x)是任一整系数多项式。若   a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod{m}\, ab(modm),则:   p ( a ) ≡ p ( b )  ⁣ ⁣ ( m o d m )   \,p(a) \equiv p(b) \!\! \pmod{m}\, p(a)p(b)(modm)
(5) 设   f ( x ) = ∑ i = 0 n a i x i   \,f(x)=\begin{aligned}\sum_{i=0}^na_ix^i\end{aligned}\, f(x)=i=0naixi   g ( x ) = ∑ i = 0 n b i x i   \,g(x)=\begin{aligned}\sum_{i=0}^nb_ix^i\end{aligned}\, g(x)=i=0nbixi是两个整系数多项式。若   a i ≡ b i  ⁣ ⁣ ( m o d m )   ( i = 1 , 2 , ⋯   , n )   \,a_i \equiv b_i \!\! \pmod{m}\,(i=1,2,\cdots,n)\, aibi(modm)(i=1,2,,n),则   f ( x ) ≡ g ( x )  ⁣ ⁣ ( m o d m )   \,f(x) \equiv g(x) \!\! \pmod{m}\, f(x)g(x)(modm)

  a 1 a 2 ≡ b 1 b 2  ⁣ ⁣ ( m o d m )   \,a_1a_2 \equiv b_1b_2 \!\! \pmod{m}\, a1a2b1b2(modm)   a 2 ≡ b 2  ⁣ ⁣ ( m o d m )   \,a_2 \equiv b_2 \!\! \pmod{m}\, a2b2(modm),且   ( a 2   , m ) = 1   \,(a_2\,,m) = 1\, (a2,m)=1,则   a 1 ≡ b 1  ⁣ ⁣ ( m o d m )   \,a_1 \equiv b_1 \!\! \pmod{m}\, a1b1(modm)
推论:若   a c ≡ b c  ⁣ ⁣ ( m o d m )   \,ac \equiv bc \!\! \pmod{m}\, acbc(modm)   ( c   , m ) = 1   \,(c\,,m)=1\, (c,m)=1,则   a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod{m}\, ab(modm)

提 示 : 利 用 恒 等 式   ( a 1 − b 1 ) a 2 + b 1 ( a 2 − b 2 ) = a 1 a 2 − b 1 b 2   提示:利用恒等式\,(a_1-b_1)a_2+b_1(a_2-b_2)=a_1a_2-b_1b_2\, (a1b1)a2+b1(a2b2)=a1a2b1b2

例题

  • 设质数   p ∤ a   \,p \nmid a\, pa   k ≥ 1   \,k \ge 1\, k1,试证:   n 2 ≡ a n  ⁣ ⁣ ( m o d p k )   \,n^2 \equiv an \!\! \pmod{p^k}\, n2an(modpk)的充要条件是   n ≡ 0  ⁣ ⁣ ( m o d p k )   \,n \equiv 0 \!\! \pmod{p^k}\, n0(modpk)   n ≡ a  ⁣ ⁣ ( m o d p k )   \,n \equiv a \!\! \pmod{p^k}\, na(modpk)
    提 示 : 充 分 性 显 然 。 必 要 性 : 由   p k ∣ n ( n − a )   , 则 有   p k ∣ n   或   p k ∣ n − a   , 但 两 者 不 会 同 时 成 立 , 否 则 由   p ∣ p k   ,   p k ∣ a   , 得 : p ∣ a   , 与 已 知 矛 盾 。 提示:充分性显然。必要性:由\,p^k \mid n(n-a)\,,则有\,p^k \mid n\,或\,p^k \mid n-a\,,但两者不会同时成立,否则由\,p \mid p^k\,,\,p^k \mid a\,,得:p \mid a\,,与已知矛盾。 pkn(na),pknpkna,ppk,pka,pa,
  •   n > 4   \,n \gt 4\, n>4,试证:   n   \,n\, n是合数的充要条件是   ( n − 2 ) ! ≡ 0  ⁣ ⁣ ( m o d n )   \,(n-2)! \equiv 0 \!\! \pmod n\, (n2)!0(modn)
    证 : ( 1 )   必 要 性 : 设   n = d 1 d 2   是 合 数 , 则   2 ≤ d 1 , d 2 ≤ n 2 < n − 2   , 当   d 1 ≠ d 2   时 , d 1 d 2 ∣ ( n − 2 ) !   , 即   ( n − 2 ) ! ≡ 0  ⁣ ⁣ ( m o d n )   ; 当   d 1 = d 2 = n   时 , 由 于   n > 4   , 所 以   d 1 ≥ 3   , 从 而   n ≥ 9   , 此 时   2 d 1 = 2 n < n − 2   , 于 是   3 ≤ d 1 < 2 d 1 < n − 2   , 即 在   ( n − 2 ) !   中 有   d 1 , 2 d 1   两 个 互 不 相 同 的 因 数 。 因 此   d 1 2 ∣ n   , 即   ( n − 2 ) ! ≡ 0  ⁣ ⁣ ( m o d n )   。 ( 2 )   充 分 性 : 设   ( n − 2 ) ! ≡ 0  ⁣ ⁣ ( m o d n )   , 假 定   n   不 是 合 数 , 则   n   必 为 质 数 , 因 为   n > 4   且   n − 2 < n   , 故   n ∤ ( n − 2 ) !   , 即   ( n − 2 ) ! ≢ 0  ⁣ ⁣ ( m o d m )   , 矛 盾 , 则   n   是 合 数 。 证:(1)\,必要性:设\,n=d_1d_2\,是合数,则\,2 \le d_1,d_2 \le \dfrac{n}{2} \lt n-2\,,当\,d_1 \ne d_2\,时,d_1d_2 \mid (n-2)!\,,即\,(n-2)! \equiv 0 \!\! \pmod{n}\,;当\,d_1=d_2=\sqrt{n}\,时,由于\,n \gt 4\,,所以\,d_1 \ge 3\,,从而\,n \ge 9\,,此时\,2d_1=2\sqrt{n} \lt n-2\,,于是\,3 \le d_1 \lt 2d_1 \lt n-2\,,即在\,(n-2)!\,中有\,d_1,2d_1\,两个互不相同的因数。因此\,d_1^2 \mid n\,,即\,(n-2)! \equiv 0 \!\! \pmod{n}\,。(2)\,充分性:设\,(n-2)! \equiv 0 \!\! \pmod{n}\,,假定\,n\,不是合数,则\,n\,必为质数,因为\,n \gt 4\,且\,n-2 \lt n\,,故\,n \nmid (n-2)!\,,即\,(n-2)! \not \equiv 0 \!\! \pmod{m}\,,矛盾,则\,n\,是合数。 (1)n=d1d2,2d1,d22n<n2,d1=d2,d1d2(n2)!,(n2)!0(modn);d1=d2=n ,n>4,d13,n9,2d1=2n <n2,3d1<2d1<n2,(n2)!d1,2d1d12n,(n2)!0(modn)(2)(n2)!0(modn),n,n,n>4n2<n,n(n2)!,(n2)!0(modm),,n
  • 试证:相邻四个整数的   4   \,4\, 4次幂的和不可能是另一个整数的   4   \,4\, 4次幂。
    证 : 显 然 , 对 于 任 一 奇 数   2 m + 1   , 都 有   ( 2 m + 1 ) 4 ≡ ( 4 m 2 + 4 m + 1 ) 2 ≡ 1 2 ≡ 1  ⁣ ⁣ ( m o d 4 )   , 对 任 一 偶 数   2 m   , 都 有   ( 2 m ) 4 ≡ 16 m 4 ≡ 0  ⁣ ⁣ ( m o d 4 )   , 而 相 邻 四 个 整 数   a , b , c , d   中 必 有 两 个 奇 数 和 两 个 偶 数 , 故   a 4 + b 4 + c 4 + d 4 ≡ 2  ⁣ ⁣ ( m o d 4 )   , 于 是 命 题 成 立 。 证:显然,对于任一奇数\,2m+1\,,都有\,(2m+1)^4 \equiv (4m^2+4m+1)^2 \equiv 1^2 \equiv 1 \!\! \pmod{4}\,,对任一偶数\,2m\,,都有\,(2m)^4 \equiv 16m^4 \equiv 0 \!\! \pmod{4}\,,而相邻四个整数\,a,b,c,d\,中必有两个奇数和两个偶数,故\,a^4+b^4+c^4+d^4 \equiv 2 \!\! \pmod{4}\,,于是命题成立。 ,2m+1,(2m+1)4(4m2+4m+1)2121(mod4),2m,(2m)416m40(mod4),a,b,c,d,a4+b4+c4+d42(mod4),
  •   p   \,p\, p为质数,试证:   ( a + b ) p ≡ a p + b p  ⁣ ⁣ ( m o d p )   \,(a+b)^p \equiv a^p+b^p \!\! \pmod{p}\, (a+b)pap+bp(modp)
    提示: 参考数学归纳法的5种常用形式——证明题的利器的反向归纳法的例题5-1,可知   a p ≡ a  ⁣ ⁣ ( m o d p )   ,   b p ≡ b  ⁣ ⁣ ( m o d p )   ,   ( a + b ) p ≡ a + b  ⁣ ⁣ ( m o d p )   , 于 是 得 :   a p + b p ≡ a + b ≡ ( a + b ) p  ⁣ ⁣ ( m o d p )   \,a^p \equiv a \!\! \pmod{p}\,,\,b^p \equiv b \!\! \pmod{p}\,,\,(a+b)^p \equiv a+b \!\! \pmod{p}\,,于是得:\,a^p+b^p \equiv a+b \equiv (a+b)^p \!\! \pmod{p}\, apa(modp),bpb(modp),(a+b)pa+b(modp),ap+bpa+b(a+b)p(modp)
  • 试证:相邻两数的立方差不能被   5   \,5\, 5整除。
    提 示 : 相 邻 两 数 必 是 一 奇 一 偶 提示:相邻两数必是一奇一偶
  • 试证:当且仅当指数   n   \,n\, n不能被   4   \,4\, 4整除时,   1 n + 2 n + 3 n + 4 n   \,1^n+2^n+3^n+4^n\, 1n+2n+3n+4n能被   5   \,5\, 5整除。
    提 示 : 4 n ≡ ( − 1 ) n  ⁣ ⁣ ( m o d 5 )   ,   3 n ≡ ( − 2 ) n  ⁣ ⁣ ( m o d 5 )   , 则   1 n + 2 n + 3 n + 4 n ≡ 1 n + ( − 1 ) n + 2 n + ( − 2 ) n   ⁣ ⁣ ( m o d 5 )   , 则 当   n = 4 m + 1   或   4 m + 3   为 奇 数 时 , 显 然 成 立 ; 当   n = 4 m + 2   时 ,   1 n + ( − 1 ) n + 2 n + ( − 2 ) n ≡ 2 + 2 ⋅ 4 ⋅ 1 6 m ≡ 2 + 8 ⋅ 1 m ≡ 10 ≡ 0  ⁣ ⁣ ( m o d 5 )   ; 当   n = 4 m   时 ,   1 n + ( − 1 ) n + 2 n + ( − 2 ) n ≡ 2 + 2 ⋅ 1 6 m ≡ 2 + 2 ⋅ 1 m ≡ 4  ⁣ ⁣ ( m o d 5 ) 提示:4^n \equiv (-1)^n \!\! \pmod{5}\,,\,3^n \equiv (-2)^n \!\! \pmod{5}\,,则\,1^n+2^n+3^n+4^n \equiv 1^n+(-1)^n+2^n+(-2)^n\, \!\! \pmod{5}\,,则当\,n = 4m+1\,或\,4m+3\,为奇数时,显然成立;当\,n=4m+2\,时,\,1^n+(-1)^n+2^n+(-2)^n \equiv 2+2 \cdot 4 \cdot 16^m \equiv 2+8 \cdot 1^m \equiv 10 \equiv 0 \!\! \pmod{5}\,;当\,n=4m\,时,\,1^n+(-1)^n+2^n+(-2)^n \equiv 2+2 \cdot 16^m \equiv 2+2 \cdot 1^m \equiv 4 \!\! \pmod{5} 4n(1)n(mod5),3n(2)n(mod5),1n+2n+3n+4n1n+(1)n+2n+(2)n(mod5),n=4m+14m+3n=4m+2,1n+(1)n+2n+(2)n2+2416m2+81m100(mod5);n=4m,1n+(1)n+2n+(2)n2+216m2+21m4(mod5)
  •   a   \,a\, a是任意正奇数,试证:   a 2 n ≡ 1  ⁣ ⁣ ( m o d 2 n + 2 )   \,a^{2^n} \equiv 1 \!\! \pmod{2^{n+2}}\, a2n1(mod2n+2)
    提 示 : a 2 n − 1 = ( a − 1 ) ( a + 1 ) ( a 2 + 1 ) ( a 4 + 1 ) ⋯ ( a 2 n − 1 + 1 ) 提示:a^{2^n} -1 = (a-1)(a+1)(a^2+1)(a^4+1)\cdots(a^{2^{n-1}}+1) a2n1=(a1)(a+1)(a2+1)(a4+1)(a2n1+1)
  •   a > 1   \,a \gt 1\, a>1   n > 1   \,n \gt 1\, n>1,称   a n   \,a^n\, an为一个完全方幂。试证:当   p   \,p\, p是一个质数时,   2 p + 3 p   \,2^p+3^p\, 2p+3p不是完全方幂。
    提 示 : 当   p   为 奇 数 时 , 2 p + 3 p = 2 p − ( − 3 ) p = [   2 − ( − 3 )   ] [   2 p − 1 + 2 p − 2 ( − 3 ) + 2 p − 3 ( − 3 ) 2 + ⋯ + ( − 3 ) p − 1   ]   , 同 时 注 意 到   2 ≡ − 3  ⁣ ⁣ ( m o d 5 )   , 因 此 有   2 p − k ( − 3 ) k − 1   ( 1 ≤ k ≤ p )   模   5   同 余 , 则   2 p − 1 + 2 p − 2 ( − 3 ) + 2 p − 3 ( − 3 ) 2 + ⋯ + ( − 3 ) p − 1 ≡ p ⋅ 2 p − 1  ⁣ ⁣ ( m o d 5 )   , 而 当   p ≠ 5   时 ,   p ⋅ 2 p − 1 ∤ 5   , 因 此 此 时   2 p + 3 p   的 质 因 数 分 解 式 中   5   的 指 数 是   1   , 因 此 此 时   2 p + 3 p   不 是 完 全 方 幂 ; 当   p = 5   时 ,   2 5 + 3 5 = 275 = 25 × 11   , 不 是 完 全 方 幂 ; 当   p = 2   时 ,   2 2 + 3 2 = 13   为 质 数 , 不 是 完 全 方 幂 。 提示:当\,p\,为奇数时,2^p+3^p=2^p-(-3)^p=[\,2-(-3)\,][\,2^{p-1}+2^{p-2}(-3)+2^{p-3}(-3)^2+\cdots+(-3)^{p-1}\,]\,,同时注意到\,2 \equiv -3 \!\! \pmod{5}\,,因此有\,2^{p-k}(-3)^{k-1}\,(1 \le k \le p)\,模\,5\,同余,则\,2^{p-1}+2^{p-2}(-3)+2^{p-3}(-3)^2+\cdots+(-3)^{p-1} \equiv p\cdot2^{p-1} \!\! \pmod{5}\,,而当\,p \ne 5\,时,\,p\cdot 2^{p-1} \nmid 5\,,因此此时\,2^p+3^p\,的质因数分解式中\,5\,的指数是\,1\,,因此此时\,2^p+3^p\,不是完全方幂;当\,p=5\,时,\,2^5+3^5=275=25 \times 11\,,不是完全方幂;当\,p=2\,时,\,2^2+3^2=13\,为质数,不是完全方幂。 p2p+3p=2p(3)p=[2(3)][2p1+2p2(3)+2p3(3)2++(3)p1],23(mod5),2pk(3)k1(1kp)5,2p1+2p2(3)+2p3(3)2++(3)p1p2p1(mod5),p=5,p2p15,2p+3p51,2p+3p;p=5,25+35=275=25×11,;p=2,22+32=13,

进一步的性质

  a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod{m}\, ab(modm),则   ( a , m ) = ( b , m )   \,(a,m)=(b,m)\, (a,m)=(b,m)

  a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod{m}\, ab(modm)   k   \,k\, k为正整数,则   a k ≡ b k  ⁣ ⁣ ( m o d m k )   \,ak \equiv bk \!\! \pmod{mk}\, akbk(modmk)

  a c ≡ b c  ⁣ ⁣ ( m o d m )   \,ac \equiv bc \!\! \pmod{m}\, acbc(modm),且   c ≠ 0   \,c \ne 0\, c=0,则   a ≡ b  ⁣ ⁣ ( m o d m ( c   , m ) )   \,a \equiv b \!\! \pmod{\dfrac{m}{(c\,,m)}}\, ab(mod(c,m)m)

  a ≡ b  ⁣ ⁣ ( m o d m )   \,a \equiv b \!\! \pmod{m}\, ab(modm)   n ∣ m   ,   n > 0   \,n \mid m\,,\,n \gt 0\, nm,n>0,则   a ≡ b  ⁣ ⁣ ( m o d n )   \,a \equiv b \!\! \pmod{n}\, ab(modn)

  a ≡ b  ⁣ ⁣ ( m o d m )   ( i = 1 , 2 , ⋯   , k )   \,a \equiv b \!\! \pmod{m}\,(i=1,2,\cdots,k)\, ab(modm)(i=1,2,,k),则   a ≡ b  ⁣ ⁣ ( m o d [   m 1 , m 2 , ⋯   , m k   ] )   \,a \equiv b \!\! \pmod{[\,m_1,m_2,\cdots,m_k\,]}\, ab(mod[m1,m2,,mk])

例题

  • 已知   a b ≡ − 1  ⁣ ⁣ ( m o d 24 )   \,ab \equiv -1 \!\! \pmod{24}\, ab1(mod24),证明:   24 ∣ ( a + b )   \,24 \mid (a+b)\, 24(a+b)
    提 示 : 由   a b ≡ − 1  ⁣ ⁣ ( m o d 24 )   , 得   a b ≡ − 1  ⁣ ⁣ ( m o d 3 )   , 则   a ≢ 0  ⁣ ⁣ ( m o d 3 )   , 若   a ≡ 1  ⁣ ⁣ ( m o d 3 )   , 则   b ≡ − 1  ⁣ ⁣ ( m o d 3 )   , 若   a ≡ − 1  ⁣ ⁣ ( m o d 3 )   , 则   b ≡ 1  ⁣ ⁣ ( m o d 3 )   , 故   a + b ≡ 0  ⁣ ⁣ ( m o d 3 )   ; 同 样 有   a b ≡ − 1  ⁣ ⁣ ( m o d 8 )   , 若   a ≡ ± 1  ⁣ ⁣ ( m o d 8 )   , 则   b ≡ ∓ 1  ⁣ ⁣ ( m o d 8 )   , 若   a ≡ ± 3  ⁣ ⁣ ( m o d 8 )   , 则 由   3 a b ≡ − 3  ⁣ ⁣ ( m o d 8 )   , 即   ± b ≡ − 3  ⁣ ⁣ ( m o d 8 )   ,   b ≡ ∓ 3  ⁣ ⁣ ( m o d 8 )   , 则   a + b ≡ 0  ⁣ ⁣ ( m o d 8 )   , 于 是   a + b ≡ 0  ⁣ ⁣ ( m o d 24 )   提示:由\,ab \equiv -1 \!\! \pmod{24}\,,得\,ab \equiv -1 \!\! \pmod{3}\,,则\,a \not \equiv 0 \!\! \pmod{3}\,,若\,a \equiv 1 \!\! \pmod{3}\,,则\,b \equiv -1 \!\! \pmod{3}\,,若\,a \equiv -1 \!\! \pmod{3}\,,则\,b \equiv 1 \!\! \pmod{3}\,,故\,a+b \equiv 0 \!\! \pmod{3}\,;同样有\,ab \equiv -1 \!\! \pmod{8}\,,若\,a \equiv \pm 1 \!\! \pmod{8}\,,则\,b \equiv \mp 1 \!\! \pmod{8}\,,若\,a \equiv \pm 3 \!\! \pmod{8}\,,则由\,3ab \equiv -3 \!\! \pmod{8}\,,即\,\pm b\equiv -3 \!\! \pmod{8}\,,\,b \equiv \mp 3 \!\! \pmod{8}\,,则\,a+b \equiv 0 \!\! \pmod{8}\,,于是\,a+b \equiv 0 \!\! \pmod{24}\, ab1(mod24),ab1(mod3),a0(mod3),a1(mod3),b1(mod3),a1(mod3),b1(mod3),a+b0(mod3);ab1(mod8),a±1(mod8),b1(mod8),a±3(mod8),3ab3(mod8),±b3(mod8),b3(mod8),a+b0(mod8),a+b0(mod24)
  • 证明:对于所有整数   a   \,a\, a,质数   p   \,p\, p   a p ≡ a  ⁣ ⁣ ( m o d 2 p )   \,a^p \equiv a \!\! \pmod{2p}\, apa(mod2p)
    提 示 : 若   p   是 质 数 , 则   a p ≡ a  ⁣ ⁣ ( m o d p )   , 对 任 意 整 数   n   , 有   a n ≡ a  ⁣ ⁣ ( m o d 2 )   提示:若\,p\,是质数,则\,a^p \equiv a \!\! \pmod{p}\,,对任意整数\,n\,,有\,a^n \equiv a \!\! \pmod{2}\, p,apa(modp),n,ana(mod2)
  •   p   \,p\, p是大于   5   \,5\, 5的质数,试证:   p 4 ≡ 1  ⁣ ⁣ ( m o d 240 )   \,p^4 \equiv 1 \!\! \pmod{240}\, p41(mod240)
    证 : ( 1 )   因 为   p > 5   为 质 数 , 故   p ≢ 0  ⁣ ⁣ ( m o d 3 )   , 即   p ≡ 1 , 2  ⁣ ⁣ ( m o d 3 )   , 于 是 有   p 4 ≡ 1 4 , 2 4 ≡ 1 , 16  ⁣ ⁣ ( m o d 3 )   ; ( 2 )   因 为   p > 5   为 质 数 , 即   p ≢ 0  ⁣ ⁣ ( m o d 5 )   , 即   p ≡ 1 , 2 , 3 , 4  ⁣ ⁣ ( m o d 5 )   , 于 是   p 4 ≡ 1 4 , 2 4 , 3 4 , 4 4 ≡ 1 , 16 , 81 , 256 ≡ 1  ⁣ ⁣ ( m o d 5 )   ; ( 3 )   设   p = 2 k + 1   , 则   p 4 ≡ ( 2 k + 1 ) 4 ≡ ( 2 k ) 4 + 4 ⋅ ( 2 k ) 3 + 6 ⋅ ( 2 k ) 2 + 4 ⋅ 2 k + 1 ≡ 24 k 2 + 8 k + 1 ≡ 8 k 2 + 8 k + 1 ≡ 8 k ( k + 1 ) + 1 ≡ 1  ⁣ ⁣ ( m o d 16 )   。 综 上 , 又 因 为   3 , 5 , 16   两 两 互 素 , 故   [   3 , 5 , 16   ] = 3 × 5 × 16 = 240   , 故   p 4 ≡ 1  ⁣ ⁣ ( m o d 240 )   证:(1)\,因为\,p \gt 5\,为质数,故\,p \not \equiv 0 \!\! \pmod{3}\,,即\,p \equiv 1,2 \!\! \pmod{3}\,,于是有\,p^4 \equiv 1^4,2^4 \equiv 1,16 \!\! \pmod{3}\,;(2)\,因为\,p \gt 5\,为质数,即\,p \not \equiv 0 \!\! \pmod{5}\,,即\,p \equiv 1,2,3,4 \!\! \pmod{5}\,,于是\,p^4 \equiv 1^4,2^4,3^4,4^4 \equiv 1,16,81,256 \equiv 1 \!\! \pmod{5}\,;(3)\,设\,p=2k+1\,,则\,p^4 \equiv (2k+1)^4 \equiv (2k)^4+4\cdot(2k)^3+6\cdot (2k)^2+4\cdot 2k+1 \equiv 24k^2+8k+1 \equiv 8k^2+8k+1 \equiv 8k(k+1)+1 \equiv 1 \!\! \pmod{16}\,。综上,又因为\,3,5,16\,两两互素,故\,[\,3,5,16\,]=3 \times 5 \times 16=240\,,故\,p^4 \equiv 1 \!\! \pmod{240}\, (1)p>5,p0(mod3),p1,2(mod3),p414,241,16(mod3);(2)p>5,p0(mod5),p1,2,3,4(mod5),p414,24,34,441,16,81,2561(mod5);(3)p=2k+1,p4(2k+1)4(2k)4+4(2k)3+6(2k)2+42k+124k2+8k+18k2+8k+18k(k+1)+11(mod16)3,5,16,[3,5,16]=3×5×16=240,p41(mod240)
  •   p   \,p\, p是大于   3   \,3\, 3的质数,试证:   p 2 ≡ 1  ⁣ ⁣ ( m o d 24 )   \,p^2 \equiv 1 \!\! \pmod{24}\, p21(mod24)
    提 示 : 参 考 上 一 题 提示:参考上一题

剩余类及完全剩余系

定义1:设   m   \,m\, m 是一个给定的正整数,把被模   m   \,m\, m除所得的余数为   r   \,r\, r的整数归于一类,记作   S r = { m q + r ∣ q 为 整 数 ,   0 ≤ r ≤ m − 1   }   \,S_r=\{mq+r \mid q为整数,\,0 \le r \le m-1\,\}\, Sr={mq+rq,0rm1},所形成的   m   \,m\, m类:   S 0 , S 1 , ⋯   , S m − 1   \,S_0,S_1,\cdots,S_{m-1}\, S0,S1,,Sm1称为模   m   \,m\, m剩余类

从模   m   \,m\, m的每一个剩余类中各取一个数作为代表所得到的   m   \,m\, m个整数,称为模   m   \,m\, m的一个完全剩余系

  0 , 1 , ⋯   , m − 1   \,0,1,\cdots,m-1\, 0,1,,m1   m   \,m\, m个整数称为模   m   \,m\, m非负最小完全剩余系;当   m   \,m\, m为奇数时,   − m − 1 2 , ⋯   , − 1 , 0 , 1 , ⋯   , m − 1 2   \,-\dfrac{m-1}{2},\cdots,-1,0,1,\cdots,\dfrac{m-1}{2}\, 2m1,,1,0,1,,2m1 称为 (奇数)模   m   \,m\, m的绝对最小完全剩余系 ;当   m   \,m\, m为偶数时,   − m 2 , ⋯   , − 1 , 0 , 1 , ⋯   , m 2 − 1   \,-\dfrac{m}{2},\cdots,-1,0,1,\cdots,\dfrac{m}{2}-1\, 2m,,1,0,1,,2m1   − m 2 + 1 , ⋯   , − 1 , 0 , 1 , ⋯   , m 2   \,-\dfrac{m}{2}+1,\cdots,-1,0,1,\cdots,\dfrac{m}{2}\, 2m+1,,1,0,1,,2m称为 (偶数)模   m   \,m\, m的绝对最小完全剩余系

例题

  • 试证:被   5   \,5\, 5除余数为   2   \,2\, 2   3   \,3\, 3的整数不是完全平方数。
    提 示 : 考 虑 以   5   为 模 的 绝 对 最 小 完 全 剩 余 系   { − 2 , − 1 , 0 , 1 , 2 }   提示:考虑以\,5\,为模的绝对最小完全剩余系\,\{-2,-1,0,1,2\}\, 5{2,1,0,1,2}
  • 试证:当   n > 3   \,n \gt 3\, n>3时,   ∑ k = 1 n k !   \,\begin{aligned}\sum_{k=1}^n k!\end{aligned}\, k=1nk!不是完全平方数。
    提 示 : 结 合 上 一 题 提示:结合上一题
  • 设整数   a , b , c   \,a,b,c\, a,b,c满足   a 2 + b 2 = c 2   \,a^2+b^2=c^2\, a2+b2=c2,试证:   a , b , c   \,a,b,c\, a,b,c中至少有一个是   5   \,5\, 5的倍数。
    提 示 : 结 合 上 上 一 题 提示:结合上上一题
  • 试证:中间项为完全立方的三个连续整数的乘积必能被   504   \,504\, 504整除。
    证 : 设   N = ( n 3 − 1 ) n 3 ( n 3 + 1 )   , 注 意 到   504 = 7 × 8 × 9   , 而   7 , 8 , 9   两 两 互 质 , 故 只 需 分 别 证   7 ∣ N   ,   8 ∣ N   ,   9 ∣ N   。 先 证   7 ∣ N   , 考 虑 以 7 为 模 的 绝 对 最 小 完 全 剩 余 系   { − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 }   , 则   n ≡ 0 , ± 1 , ± 2 , ± 3  ⁣ ⁣ ( m o d 7 )   , 从 而   n 3 ≡ 0 , ± 1  ⁣ ⁣ ( m o d 7 )   , 故   7 ∣ N   , 同 理 可 证   9 ∣ N   。 当   n   为 偶 数 时 ,   8 ∣ n 3   故   8 ∣ N   ; 当   n   为 奇 数 时 , 设   n = 2 m + 1   , ( n − 1 ) ( n + 1 ) = 2 m ( 2 m + 2 ) = 4 m ( m + 1 ) ≡ 0  ⁣ ⁣ ( m o d 8 )   , 而   n − 1 ∣ n 3 − 1   ,   n + 1 ∣ n 3 + 1   , 故   8 ∣ N   。 证:设\,N=(n^3-1)n^3(n^3+1)\,,注意到\,504=7\times8\times9\,,而\,7,8,9\,两两互质,故只需分别证\,7 \mid N\,,\,8 \mid N\,,\,9 \mid N\,。先证\,7 \mid N\,,考虑以7为模的绝对最小完全剩余系\,\{-3,-2,-1,0,1,2,3\}\,,则\,n \equiv 0,\pm1,\pm2,\pm3 \!\! \pmod{7}\,,从而\,n^3 \equiv 0,\pm1 \!\! \pmod{7}\,,故\,7 \mid N\,,同理可证\,9 \mid N\,。当\,n\,为偶数时,\,8 \mid n^3\,故\,8 \mid N\,;当\,n\,为奇数时,设\,n=2m+1\,,(n-1)(n+1)=2m(2m+2)=4m(m+1) \equiv 0 \!\! \pmod{8}\,,而\,n-1 \mid n^3-1\,,\,n+1 \mid n^3+1\,,故\,8 \mid N\,。 N=(n31)n3(n3+1),504=7×8×9,7,8,9,7N,8N,9N7N,7{3,2,1,0,1,2,3},n0,±1,±2,±3(mod7),n30,±1(mod7),7N,9Nn,8n38N;n,n=2m+1,(n1)(n+1)=2m(2m+2)=4m(m+1)0(mod8),n1n31,n+1n3+1,8N

完全剩余系的基本性质

性质1:若   a 1 , a 2 , ⋯   , a m   \,a_1,a_2,\cdots,a_m\, a1,a2,,am是关于模   m   \,m\, m的两两互不同余的   m   \,m\, m个整数,则这些整数就构成了模   m   \,m\, m的完全剩余系。

性质2:设   m   \,m\, m是正整数,   ( a   , m ) = 1   \,(a\,,m)=1\, (a,m)=1   b   \,b\, b是任意整数。若   x   \,x\, x通过模   m   \,m\, m的一个完全剩余系,则   a x + b   \,ax+b\, ax+b也通过模   m   \,m\, m的完全剩余系。

证 : 设   a 0 , a 1 , ⋯   , a m − 1   是 模   m   的 一 个 完 全 剩 余 系 。 由 性 质 1 , 只 需 证 明   m   个 整 数   a a 0 + b , a a 1 + b , ⋯   , a a m − 1 + b   关 于 模   m   两 两 不 同 余 即 可 。 用 反 证 法 。 假 设   a a i + b ≡ a a j + b   ⁣ ⁣ ( m o d m )   ( i , j = 0 , 1 , ⋯   , m − 1   , 且   i ≠ j   ) , 则 有   a a i ≡ a a j  ⁣ ⁣ ( m o d m )   , 因   ( a   , m ) = 1   , 故   a i ≡ a j  ⁣ ⁣ ( m o d m )   , 这 与   a 0 , a 1 , ⋯   , a m − 1   是 完 全 剩 余 系 的 假 设 矛 盾 , 故 结 论 成 立 。 证:设\,a_0,a_1,\cdots,a_{m-1}\,是模\,m\,的一个完全剩余系。由性质1,只需证明\,m\,个整数\,aa_0+b,aa_1+b,\cdots,aa_{m-1}+b\,关于模\,m\,两两不同余即可。用反证法。假设\,aa_i+b \equiv aa_j+b\, \!\! \pmod{m}\,(i,j=0,1,\cdots,m-1\,,且\,i \ne j\,),则有\,aa_i \equiv aa_j \!\! \pmod{m}\,,因\,(a\,,m)=1\,,故\,a_i \equiv a_j \!\! \pmod{m}\,,这与\,a_0,a_1,\cdots,a_{m-1}\,是完全剩余系的假设矛盾,故结论成立。 a0,a1,,am1m1,maa0+b,aa1+b,,aam1+bmaai+baaj+b(modm)(i,j=0,1,,m1,i=j),aaiaaj(modm),(a,m)=1,aiaj(modm),a0,a1,,am1,

性质3:设   m 1 , m 2   \,m_1,m_2\, m1,m2是互质的两个正整数。若   x 1 , x 2   \,x_1,x_2\, x1,x2分别通过模   m 1 , m 2   \,m_1,m_2\, m1,m2的完全剩余系,则   m 2 x 1 + m 1 x 2   \,m_2x_1+m_1x_2\, m2x1+m1x2通过模   m 1 m 2   \,m_1m_2\, m1m2的完全剩余系。

证 : 由 假 设 , 知   x 1 , x 2   分 别 通 过   m 1 , m 2   个 整 数 , 因 此   m 2 x 1 + m 1 x 2   通 过   m 1 m 2   个 整 数 。 由 性 质 1 , 只 需 证 明 这   m 1 m 2   个 整 数 关 于 模   m 1 m 2   两 两 不 同 余 即 可 。 假 定   m 2 x 1 ′ + m 1 x 2 ′ ≡ m 2 x 1 ′ ′ + m 1 x 2 ′ ′  ⁣ ⁣ ( m o d m 1 m 2 )   , 这 里   x 1 ′ , x 1 ′ ′   是   x 1   所 通 过 的 完 全 剩 余 系 中 的 整 数 , 而   x 2 ′ , x 2 ′ ′   是   x 2   所 通 过 的 完 全 剩 余 系 中 的 整 数 。 则   m 2 ( x 1 ′ − x 1 ′ ′ ) + m 1 ( x 2 ′ − x 2 ′ ′ ) ≡ 0  ⁣ ⁣ ( m o d m 1 m 2 ) 。 设   x 1 ′ − x 1 ′ ′ = k 1 m 1 + a   ( 0 ≤ a ≤ m 1 − 1 ) ,   x 2 ′ − x 2 ′ ′ = k 2 m 2 + b   ( 0 ≤ b ≤ m 2 − 1 )   , 于 是 有   m 2 a + m 1 b = 0   , 又 由   ( m 1 , m 2 ) = 1   , 得   m 2 ∣ b , m 1 ∣ a   , 则   a = 0 , b = 0   , 得 : x 1 ′ ≡ x 1 ′ ′  ⁣ ⁣ ( m o d m 1 )   ,   x 2 ′ ≡ x 2 ′ ′  ⁣ ⁣ ( m o d m 2 )   但   x 1 ′ , x 1 ′ ′   是 模   m 1   的 一 个 完 全 剩 余 系 中 的 整 数 ,   x 2 ′ , x 2 ′ ′   是 模   m 2   的 一 个 完 全 剩 余 系 中 的 整 数 , 因 此   x 1 ′ = x 1 ′ ′ , x 2 ′ = x 2 ′ ′   。 因 此 , 如 果   x 1 ′   与   x 1 ′ ′   、   x 2 ′   与   x 2 ′ ′   不 全 相 同 , 则   m 2 x 1 ′ + m 1 x 2 ′ ≢ m 2 x 1 ′ ′ + m 1 x 2 ′ ′  ⁣ ⁣ ( m o d m 1 m 2 )   , 故 命 题 成 立 。 证:由假设,知\,x_1,x_2\,分别通过\,m_1,m_2\,个整数,因此\,m_2x_1+m_1x_2\,通过\,m_1m_2\,个整数。\\ 由性质1,只需证明这\,m_1m_2\,个整数关于模\,m_1m_2\,两两不同余即可。假定 \\ \,m_2x_1'+m_1x_2' \equiv m_2x_1''+m_1x_2'' \!\! \pmod{m_1m_2}\,,\\ 这里\,x_1',x_1''\,是\,x_1\,所通过的完全剩余系中的整数,而\,x_2',x_2''\,是\,x_2\,所通过的完全剩余系中的整数。则\,m_2(x_1'-x_1'')+m_1(x_2'-x_2'') \equiv 0 \!\! \pmod{m_1m_2}。设\,x_1'-x_1''=k_1m_1+a\,(0 \le a \le m_1-1),\,x_2'-x_2''=k_2m_2+b\,(0 \le b \le m_2-1)\,,于是有\,m_2a+m_1b=0\,,又由\,(m_1,m_2)=1\,,得\,m_2 \mid b,m_1 \mid a\,,则\,a=0,b=0\,,得:x_1' \equiv x_1'' \!\! \pmod{m_1}\,,\,x_2' \equiv x_2'' \!\! \pmod{m_2}\,但\,x_1',x_1''\,是模\,m_1\,的一个完全剩余系中的整数,\,x_2',x_2''\,是模\,m_2\,的一个完全剩余系中的整数,因此\,x_1' = x_1'',x_2'=x_2''\,。因此,如果\,x_1'\,与\,x_1''\,、\,x_2'\,与\,x_2''\,不全相同,则\,m_2x_1'+m_1x_2' \not \equiv m_2x_1''+m_1x_2'' \!\! \pmod{m_1m_2}\,,故命题成立。 ,x1,x2m1,m2,m2x1+m1x2m1m21,m1m2m1m2m2x1+m1x2m2x1+m1x2(modm1m2),x1,x1x1,x2,x2x2m2(x1x1)+m1(x2x2)0(modm1m2)x1x1=k1m1+a(0am11),x2x2=k2m2+b(0bm21),m2a+m1b=0,(m1,m2)=1,m2b,m1a,a=0,b=0,x1x1(modm1),x2x2(modm2)x1,x1m1,x2,x2m2,x1=x1,x2=x2,x1x1x2x2,m2x1+m1x2m2x1+m1x2(modm1m2),

性质4:设   m 1 , m 2 , ⋯   , m k   \,m_1,m_2,\cdots,m_k\, m1,m2,,mk   k   \,k\, k个正整数。若   x 1 , x 2 , ⋯   , x k   \,x_1,x_2,\cdots,x_k\, x1,x2,,xk分别通过   m 1 , m 2 , ⋯   , m k   \,m_1,m_2,\cdots,m_k\, m1,m2,,mk的完全剩余系,则   x 1 + m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 m 2 ⋯ m k − 1 x k   \,x_1+m_1x_2+m_1m_2x_3+\cdots+m_1m_2\cdots m_{k-1}x_k\, x1+m1x2+m1m2x3++m1m2mk1xk通过模   m 1 m 2 ⋯ m k   \,m_1m_2\cdots m_k\, m1m2mk的完全剩余系。
推论:设   n   \,n\, n是正整数。若   x 1 , x 2 , ⋯   , x k   \,x_1,x_2,\cdots,x_k\, x1,x2,,xk分别通过模   n   \,n\, n的完全剩余系,则   x 1 + n x 2 + n 2 x 3 + ⋯ + n k − 1 x k   \,x_1+nx_2+n^2x_3+\cdots+n^{k-1}x_k\, x1+nx2+n2x3++nk1xk通过模   n k   \,n^k\, nk的完全剩余系。

提示: 参 考 上 一 性 质 证 明 的 反 证 法 思 想 ( 逆 否 命 题 的 思 想 ) , 或 者 考 虑  ⁣ ⁣ 《 数 学 归 纳 法 》  ⁣ ⁣ ⁣ +  ⁣ ⁣ ⁣ 《 整 体 法 》 参考上一性质证明的反证法思想(逆否命题的思想),或者考虑\!\!《数学归纳法》\!\!\!+\!\!\!《整体法》 (),+

性质5:若   y 1 , y 2 , ⋯   , y m   \,y_1,y_2,\cdots,y_m\, y1,y2,,ym是模   m   \,m\, m的完全剩余系,则当   2 ∤ m   时 ,   ∑ i = 1 m y i ≡ 0  ⁣ ⁣ ( m o d m )   ; 当   2 ∣ m   时 ,   ∑ i = 1 m y i ≡ m 2  ⁣ ⁣ ( m o d m ) \,2 \nmid m\,时,\,\begin{aligned}\sum_{i=1}^my_i\end{aligned}\equiv 0 \!\! \pmod{m}\,;当\,2 \mid m\,时,\,\begin{aligned}\sum_{i=1}^my_i\end{aligned} \equiv \dfrac{m}{2} \!\! \pmod{m} 2m,i=1myi0(modm);2m,i=1myi2m(modm)

例题

  •   p   \,p\, p是一个质数,试证:   C n p ≡ [   n p   ]  ⁣ ⁣ ( m o d p )   \,C_n^p \equiv [\,\dfrac{n}{p}\,] \!\! \pmod{p}\, Cnp[pn](modp)
    证 : 因 为   p   个 连 续 正 整 数   n , n − 1 , ⋯   , n − p + 1   构 成 模   p   的 一 个 完 全 剩 余 系 , 所 以 有 一 个 ( 也 只 有 一 个 ) 数 , 不 妨 设 为   n − i   , 使 得   p ∣ n − i   ( 0 ≤ i ≤ p − 1 )   , 由   n p = n − i p + i p   , 可 得   [   n p   ] = n − i p   , 这 样   M = n ( n − 1 ) ⋯ ( n − p + 1 ) n − i ≡ ( p − 1 ) !  ⁣ ⁣ ( m o d p )   , 另 外 ,   M [   n p   ] = ( n − i ) M p = ( p − 1 ) !   C n p   , 于 是 有   ( p − 1 ) !   [   n p   ] ≡ ( p − 1 ) !   C n p  ⁣ ⁣ ( m o d p )   , 但   ( ( p − 1 ) !   , p ) = 1   , 故   C n p ≡ [   n p   ]  ⁣ ⁣ ( m o d p )   证:因为\,p\,个连续正整数\,n,n-1,\cdots,n-p+1\,构成模\,p\,的一个完全剩余系,所以有一个(也只有一个)数,不妨设为\,n-i\,,使得\,p \mid n-i\,(0 \le i \le p-1)\,,由\,\dfrac{n}{p}=\dfrac{n-i}{p}+\dfrac{i}{p}\,,可得\,[\,\dfrac{n}{p}\,]=\dfrac{n-i}{p}\,,这样\,M=\dfrac{n(n-1)\cdots(n-p+1)}{n-i} \equiv (p-1)! \!\! \pmod{p}\,,另外,\,M[\,\dfrac{n}{p}\,]=\dfrac{(n-i)M}{p}=(p-1)!\,C_n^p\,,于是有\,(p-1)!\,[\,\dfrac{n}{p}\,] \equiv (p-1)!\,C_n^p \!\! \pmod{p}\,,但\,((p-1)!\,,p)=1\,,故\,C_n^p \equiv [\,\dfrac{n}{p}\,] \!\! \pmod{p}\, pn,n1,,np+1p(),ni,使pni(0ip1),pn=pni+pi,[pn]=pni,M=nin(n1)(np+1)(p1)!(modp),,M[pn]=p(ni)M=(p1)!Cnp,(p1)![pn](p1)!Cnp(modp),((p1)!,p)=1,Cnp[pn](modp)
  • 试证:   x = u + p s − t v   ( u = 0 , 1 , ⋯   , p s − t − 1   ;   v = 0 , 1 , ⋯   , p t − 1   ;   t ≤ s ) \,x=u+p^{s-t}v\,(u=0,1,\cdots,p^{s-t}-1\,;\,v=0,1,\cdots,p^t-1\,;\,t \le s) x=u+pstv(u=0,1,,pst1;v=0,1,,pt1;ts)是模   p s   \,p^s\, ps的一个完全剩余系。
    提示: 性 质   4   当   k = 2   时 的 直 接 运 用 性质\,4\,当\,k=2\,时的直接运用 4k=2
  •   m 1 , m 2 , ⋯   , m k   \,m_1,m_2,\cdots,m_k\, m1,m2,,mk   k   \,k\, k个两两互质的正整数,   x 1 , x 2 , ⋯   , x k   \,x_1,x_2,\cdots,x_k\, x1,x2,,xk分别通过模   m 1 , m 2 , ⋯   , m k   \,m_1,m_2,\cdots,m_k\, m1,m2,,mk的完全剩余系,试证:   M 1 x 1 + M 2 x 2 + ⋯ + M k x k   \,M_1x_1+M_2x_2+\cdots+M_kx_k\, M1x1+M2x2++Mkxk通过模   m = m 1 m 2 ⋯ m k   \,m=m_1m_2\cdots m_k\, m=m1m2mk的完全剩余系,这里   m = m i M i   ( i = 1 , 2 , ⋯   , k ) \,m=m_iM_i\,(i=1,2,\cdots,k) m=miMi(i=1,2,,k)
    提示: 参 考 性 质   3   、   4   的 证 明 思 想 参考性质\,3\,、\,4\,的证明思想 34
  •   m > 0   \,m \gt 0\, m>0   ( a   , m ) = 1   \,(a\,,m)=1\, (a,m)=1,试证:   ∑ x = 1 m − 1 [   a x m   ] = 1 2 ( m − 1 ) ( a − 1 )   \,\begin{aligned}\sum_{x=1}^{m-1}[\,\dfrac{ax}{m}\,]=\dfrac{1}{2}(m-1)(a-1)\end{aligned}\, x=1m1[max]=21(m1)(a1)
    提示: 易 知   a x m = [   a x m   ] + { a x m }   , 而   a x m = 1 2 ( m − 1 ) a   ,   { a x m } = 1 2 ( m − 1 )   易知\,\dfrac{ax}{m}=[\,\dfrac{ax}{m}\,]+\{\dfrac{ax}{m}\}\,,而\,\dfrac{ax}{m}=\dfrac{1}{2}(m-1)a\,,\,\{\dfrac{ax}{m}\}=\dfrac{1}{2}(m-1)\, max=[max]+{max},max=21(m1)a,{max}=21(m1)

End

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值