初等数论 3.2 离散对数

本文介绍了离散对数的概念及其在数论中的基本定理。主要内容包括离散对数的定义,原根的存在性,以及离散对数与模幂剩余的关系。通过一系列定理和证明,阐述了离散对数在解决模幂剩余问题中的作用,并给出了关于素数判定的推论和练习题。
摘要由CSDN通过智能技术生成

定义:设 m ∈ Z + m\in\Z^+ mZ+且有原根 r r r,若 a ∈ Z + a\in\Z^+ aZ+满足 ( a , m ) = 1 (a,m)=1 (a,m)=1,使得同余式 r x ≡ a ( m o d m ) 1 ≤ x ≤ ϕ ( m ) r^x\equiv a\pmod m \quad 1\le x \le \phi(m) rxa(modm)1xϕ(m)成立的唯一的整数 x x x称为 a a a对模 m m m的以 r r r为底的指数(离散对数),记为 i n d r a \mathrm{ind_r a} indra.
定理:设 m ∈ Z + m\in\Z^+ mZ+且有原根 r r r,且 a a a b b b是均与 m m m互素的整数,则:
1. i n d r 1 ≡ 0 ( m o d ϕ ( m ) ) \mathrm{ind_r 1}\equiv 0\pmod{\phi(m)} indr10(modϕ(m)).
2. i n d r a b ≡ i n d r a + i n d r b ( m o d ϕ ( m ) ) \mathrm{ind_r ab}\equiv \mathrm{ind_r a}+\mathrm{ind_r b}\pmod{\phi(m)} indrabindra+indrb(modϕ(m)).
3. i n d r a k ≡ k ⋅ i n d r a ( m o d ϕ ( m ) ) k ∈ Z + \mathrm{ind_r a^k}\equiv k\cdot \mathrm{ind_r a}\pmod{\phi(m)} \quad k\in\Z^+ indrakkindra(modϕ(m))kZ+.
定义:设 m , k , a ∈ Z + , ( a , m ) = 1 m,k,a\in\Z^+,(a,m)=1 m,k,aZ+,(a,m)=1,若同余方程 x k ≡ a ( m o d m ) x^k\equiv a\pmod m xka(modm)有解,则称 a a a m m m k k k次幂剩余.
定理:设 m ∈ Z + m\in\Z^+ mZ+且有原根, k ∈ Z + , a ∈ Z k\in\Z^+,a\in\Z kZ+

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值