线性代数系列(1)行列式

行列式

主要名词概念

逆序、逆序数、对换、奇偶排列、n阶行列式、上下三角形行列式、对角行列式、转置行列式、余子式、代数余子式、k阶子式、k阶子式的余子式、k阶子式的代数余子式、对称行列式、反对称行列式、系数行列式、零解、非零解

n阶行列式

二、三阶行列式的概念、定义

二阶行列式

行列式的概念是从解线性方程组的问题中产生的,比如二元线性方程组:

{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \LARGE \left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \\ \end{matrix}\right. a11x1+a12x2=b1a21x1+a22x2=b2
用加减消元法,先消去 x 2 \large x_2 x2 得:
( a 11 a 22 − a 12 a 21 ) x 1 = b 1 a 22 − b 2 a 12 \LARGE (a_{11}a_{22} - a_{12}a_{21}) x_1 = b_1 a_{22} - b_2 a_{12} (a11a22a12a21)x1=b1a22b2a12
同样的方法消去 x 1 \large x_1 x1 得:
( a 11 a 22 − a 12 a 21 ) x 2 = b 2 a 11 − b 1 a 21 \LARGE (a_{11}a_{22} - a_{12}a_{21}) x_2 = b_2 a_{11} - b_1 a_{21} (a11a22a12a21)x2=b2a11b1a21
因此,当 ( a 11 a 22 − a 12 a 21 ) ≠ 0 \large (a_{11}a_{22} - a_{12}a_{21}) \ne 0 (a11a22a12a21)=0 时有唯一解,即:
x 1 = b 1 a 22 − b 2 a 12 a 11 a 22 − a 12 a 21 , x 2 = b 2 a 11 − b 1 a 21 a 11 a 22 − a 12 a 21 \LARGE x_1 = \frac{b_1 a_{22} - b_2 a_{12}} {a_{11}a_{22} - a_{12}a_{21}} , x_2 = \frac{b_2 a_{11} - b_1 a_{21}} {a_{11}a_{22} - a_{12}a_{21}} x1=a11a22a12a21b1a22b2a12,x2=a11a22a12a21b2a11b1a21
为了方便记忆,我们定义一个符号:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \LARGE \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} a11a21a12a22 =a11a22a12a21
这样规定的记号 ∣ a 11 a 12 a 21 a 22 ∣ \large \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} a11a21a12a22 称为 二阶行列式 ,它含有两行两列,横为行,竖为列。

行列式中,数 a i j ( i , j = 1 , 2 ) \large a_{ij} (i,j = 1,2) aij(i,j=1,2) 称为行列式的元素,第一个下标 i \large i i 称为 行标 ,第二个下标 j \large j j 称为 列标 。比如 a 21 \large a_{21} a21 就是第二行第一列的元素。

二阶行列式的计算

由上面的定义,我们可以知道二阶行列式是这样两项的代数和:

  • 从左上角到右下角,也就是实线,称为 行列式的主对角线
  • 从右上角到左下角,也就是虚线,称为 行列式的次对角线

计算的话,就是主对角线元素相乘,减去次对角线上的元素相乘。

例题:

D = ∣ λ − 1 1 2 λ ∣ \large D= \begin{vmatrix} \lambda -1 & 1 \\ 2 & \lambda \end{vmatrix} D= λ121λ ,问:当 $\large \lambda $ 为何值时, D ≠ 0 \large D\ne 0 D=0

解:
D = ∣ λ − 1 1 2 λ ∣ = ( λ − 1 ) λ − 2 = ( λ − 2 ) ( λ + 1 ) \LARGE D= \begin{vmatrix} \lambda -1 & 1 \\ 2 & \lambda \end{vmatrix} = (\lambda -1)\lambda -2 = (\lambda -2)(\lambda +1) D= λ121λ =(λ1)λ2=(λ2)(λ+1)
所以当 ( λ − 2 ) ( λ + 1 ) ≠ 0 \large (\lambda -2)(\lambda +1) \ne 0 (λ2)(λ+1)=0 时, D ≠ 0 \large D\ne 0 D=0 。即 λ ≠ 2 , λ ≠ − 1 \large \lambda \ne 2, \lambda \ne -1 λ=2,λ=1

三阶行列式

同样的,由上述二阶行列式,我们可以衍生出三阶行列式,对于三元线性方程组:
{ a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \LARGE \left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \\ \end{matrix}\right. a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3
同前面一样,为了方便记忆,我们引入记号:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 \LARGE \begin{array}{l} \left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right| \\ =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\ -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} \end{array} a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a13a22a31a12a21a33a11a23a32
上面就称为 三阶行列式 。它含有三行三列,是 3 ! = 6 \large 3! = 6 3!=6 项的代数和。

三阶行列式的计算

和二阶行列式一样可以用画线法来进行记忆,下面这个方法称为三阶行列式的 对角线展开法

  • 三个实线上的元素分别相乘然后相加,再减去每个虚线上的元素相乘
  • 对角线展开法 仅适用与三阶及以下的行列式计算

排列和逆序

❗️ 定义:由1,2,…,n组成的一个有序数组称为一个n级排列。

列如,123,是一个3级排序,4132,2143,1234都说4级排序。n级排列共有 n ! \large n! n! 个。

❗️ 定义:在一个n级排列中,如果较大的数排列在较小的数前面,则它们构成一个逆序,一个n级排列中逆序的总和称为它的 逆序数 。排列 i 1 i 2 . . . i n \large i_1i_2...i_n i1i2...in 的逆序数记为 N ( i 1 i 2 . . . i n ) \large N(i_1i_2...i_n) N(i1i2...in)

  • 逆序数为偶数称为 **偶排列 **
  • 逆序数为奇数称为 奇排列

例如,排列 4132 中,4和1,4和3,4和2,3和2,各构成一个逆序,总共4个逆序,即 N ( 4132 ) = 4 \large N(4132)=4 N(4132)=4 ,是一个偶排列。

在这里插入图片描述

计算逆序数的时候可以从第一个数开始往后比较,如:

  • ①分别和②③④比较,如果①比较大,就加一
  • ②分别和③④比较,如果②比较大,就加一
  • ③和④比较,如果③比较大,就加一

❗️ 定理:一个排列经过一个对换后(排列中的任意两个数交换位置),奇偶性改变。

由上述定理可以得到下面一个重要的结论

❗️ 定理:在全部n级别排列中,偶排列和奇排列各占一半,都有 n ! 2 ( n ≥ 2 ) \large \frac{n!}{2} (n\ge 2) 2n!(n2) 个 。

n阶行列式

由二阶、三阶行列式的概念推广到n阶:

❗️ 定义:由 n 2 \large n^2 n2 个元素 a i j ( i , j = 1 , 2 , . . . , n ) \large a_{ij} (i,j=1,2,...,n) aij(i,j=1,2,...,n) 组成的记号
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} a11a21...an1a12a22...an2............a1na2n...ann
称为 n阶行列式

n阶行列式的计算

将行列式 ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \large \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} a11a21...an1a12a22...an2............a1na2n...ann 简记为 D = ∣ a i j ∣ \large D=\begin{vmatrix}a_{ij}\end{vmatrix} D= aij

并将元素 a 11 , a 22 , . . . , a n n \large a_{11},a_{22},...,a_{nn} a11,a22,...,ann (从左上角到右下角的对角线)称为 主对角线 ;把元素 a 1 n , a 2 , n − 1 , . . . , a n 1 \large a_{1n},a_{2,n-1},...,a_{n1} a1n,a2,n1,...,an1 (从右上角到左下角的对角线)称为 次对角线

按行展开计算

D = ∑ j 1 j 2 . . . j n ( − 1 ) N ( j 1 j 2 . . . j n ) a 1 j 1 a 2 j 2 . . . a n j n \LARGE D=\sum_{j_1j_2...j_n}^{} (-1)^{N(j_1j_2...j_n)} a_{1j_1}a_{2j_2}...a_{nj_n} D=j1j2...jn(1)N(j1j2...jn)a1j1a2j2...anjn

也就是 是固定顺序, 是按照排列来的,因为有n列,所以有 n ! \large n! n! 项。又因为在n级排列中,奇偶排列各占一半,符号是根据奇偶排列来的,所有正负项也各占一半。

一般项为:
( − 1 ) N ( j 1 j 2 . . . j n ) a 1 j 1 a 2 j 2 . . . a n j n \LARGE (-1)^{N(j_1j_2...j_n)} a_{1j_1}a_{2j_2}...a_{nj_n} (1)N(j1j2...jn)a1j1a2j2...anjn

按列展开计算

D = ∑ i 1 i 2 . . . i n ( − 1 ) N ( i 1 i 2 . . . i n ) a i 1 1 a i 2 2 . . . a i n n \LARGE D=\sum_{i_1i_2...i_n}^{} (-1)^{N(i_1i_2...i_n)} a_{i_11}a_{i_22}...a_{i_nn} D=i1i2...in(1)N(i1i2...in)ai11ai22...ainn

一般项为:
( − 1 ) N ( i 1 i 2 . . . i n ) a i 1 1 a i 2 2 . . . a i n n \LARGE (-1)^{N(i_1i_2...i_n)} a_{i_11}a_{i_22}...a_{i_nn} (1)N(i1i2...in)ai11ai22...ainn

既不按行也不按列

n行列式的一般项,可以记为:
在这里插入图片描述

上三角、下三角、对角行列式
下三角行列式:

D = ∣ a 11 0 0 . . . 0 a 21 a 22 0 . . . 0 . . . . . . . . . . . . . . . a n 1 a n 2 a n 3 . . . a n n ∣ = a 11 a 22 a 33 . . . a n n \LARGE D= \begin{vmatrix} a_{11} & 0 & 0 & ... & 0 \\ a_{21} & a_{22} & 0 & ... & 0 \\ ... & ... & ... & ... & ... \\ a_{n1} & a_{n2} & a_{n3} & ... & a_{nn} \\ \end{vmatrix} = a_{11}a_{22}a_{33}...a_{nn} D= a11a21...an10a22...an200...an3............00...ann =a11a22a33...ann

它的值等于其主对角线上的所有元素的乘积

上三角行列式:

D = ∣ a 11 a 12 a 13 . . . a 1 n 0 a 22 a 23 . . . a 2 n . . . . . . . . . . . . . . . 0 0 0 . . . a n n ∣ = a 11 a 22 a 33 . . . a n n \LARGE D= \begin{vmatrix} a_{11} & a_{12} & a_{13} & ... & a_{1n} \\ 0 & a_{22} & a_{23} & ... & a_{2n} \\ ... & ... & ... & ... & ... \\ 0 & 0 & 0 & ... & a_{nn} \\ \end{vmatrix} = a_{11}a_{22}a_{33}...a_{nn} D= a110...0a12a22...0a13a23...0............a1na2n...ann =a11a22a33...ann

它的值也等于其主对角线上的所有元素的乘积

对角行列式:

D = ∣ a 11 0 0 . . . 0 0 a 22 0 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . a n n ∣ = a 11 a 22 a 33 . . . a n n \LARGE D= \begin{vmatrix} a_{11} & 0 & 0 & ... & 0 \\ 0 & a_{22} & 0 & ... & 0 \\ ... & ... & ... & ... & ... \\ 0 & 0 & 0 & ... & a_{nn} \\ \end{vmatrix} = a_{11}a_{22}a_{33}...a_{nn} D= a110...00a22...000...0............00...ann =a11a22a33...ann

它的值也等于其主对角线上的所有元素的乘积

次对角线上

比如类似这种的
D = ∣ 0 . . . 0 a 1 n 0 . . . a 2 , n − 1 a 1 n . . . . . . . . . . . . a n 1 . . . a n , n − 1 a 1 n ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 . . . a n 1 \LARGE D= \begin{vmatrix} 0 & ... & 0 & a_{1n} \\ 0 & ... & a_{2,n-1} & a_{1n} \\ ... & ... & ... & ... \\ a_{n1} & ... & a_{n,n-1} & a_{1n} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} a_{1n}a_{2,n-1}...a_{n1} D= 00...an1............0a2,n1...an,n1a1na1n...a1n =(1)2n(n1)a1na2,n1...an1
它的值等于其次主对角线上的所有元素的乘积,并且是带符号的。

例题

例1:

计算行列式
D = ∣ 0 2 0 0 0 0 3 0 0 0 0 4 1 0 0 0 ∣ \LARGE D= \begin{vmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \end{vmatrix} D= 0001200003000040
仔细观察上面的行列式会发现每行只有一个元素为不为0,而这4给元素又在不同列。

我们按行展开,只有一项非零项,其余项都会为0,即:
a 12 a 23 a 34 a 41 = 2 × 3 × 4 × 1 = 24 \LARGE a_{12}a_{23}a_{34}a_{41} = 2 \times 3 \times 4 \times 1=24 a12a23a34a41=2×3×4×1=24
又因为2341是奇排列,因此这一项前面应该为负号,所以:
D = − a 12 a 23 a 34 a 41 = − 24 \LARGE D = -a_{12}a_{23}a_{34}a_{41} = -24 D=a12a23a34a41=24

例2:

在这里插入图片描述

行列式的性质

转置行列式

设有n阶行列式
D = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE D= \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} D= a11a21...an1a12a22...an2............a1na2n...ann
将D的行与列进行交换后得到的行列式,称为D的 转置行列式 ,记为 D T \large D^T DT D ′ \large D^{'} D 。即:
D = ∣ a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . . . . . . . a 1 n a 2 n . . . a n n ∣ \LARGE D= \begin{vmatrix} a_{11} & a_{21} & ... & a_{n1} \\ a_{12} & a_{22} & ... & a_{n2} \\ ... & ... & ... & ... \\ a_{1n} & a_{2n} & ... & a_{nn} \\ \end{vmatrix} D= a11a12...a1na21a22...a2n............an1an2...ann
显然 ( D T ) T = D \large (D^T)^T = D (DT)T=D

❗️ 性质:对于任何行列式D,均有 D T = D \large D^T = D DT=D

证:记D的一般项为
( − 1 ) N ( j 1 j 2 . . . j n ) a 1 j 1 a 2 j 2 . . . a n j n \LARGE (-1)^{N(j_1j_2...j_n)} a_{1j_1}a_{2j_2}...a_{nj_n} (1)N(j1j2...jn)a1j1a2j2...anjn
它的元素在 D \large D D 中位于不同行不同列,因此在 D T \large D^T DT 中也位于不同行不同列,所以这n个元素在 D T \large D^T DT 中应该为:
a j 1 1 a j 2 2 . . . a j n n \LARGE a_{j_11}a_{j_22}...a_{j_nn} aj11aj22...ajnn
j \large j j 换成 i \large i i ,就是列展开的形式:
( − 1 ) N ( i 1 i 2 . . . i n ) a i 1 1 a i 2 2 . . . a i n n \LARGE (-1)^{N(i_1i_2...i_n)} a_{i_11}a_{i_22}...a_{i_nn} (1)N(i1i2...in)ai11ai22...ainn
所以 D T = D \large D^T = D DT=D

❗️ 性质:行列式两行(列)互换,其值变号。即:
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a s 1 a s 2 . . . a s n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = − ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a s 1 a s 2 . . . a s n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{s1}& a_{s2} & ... & a_{sn}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} = - \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{s1}& a_{s2} & ... & a_{sn}\\ ... & ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} a11...ai1...as1...an1a12...ai2...as2...an2.....................a1n...ain...asn...ann = a11...as1...ai1...an1a12...as2...ai2...an2.....................a1n...asn...ain...ann

❗️ 性质:将行列式的某一行或某一列中所有元素同乘以数k,等于用这个数k乘该行列式:
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . k a i 1 k a i 2 . . . k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = k ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ ka_{i1}& ka_{i2} & ... & ka_{in}\\ ... & ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} = k \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} a11...kai1...an1a12...kai2...an2...............a1n...kain...ann =k a11...ai1...an1a12...ai2...an2...............a1n...ain...ann
利用上述方法可以进行提取公因数。

❗️ 性质:如果行列式中有两行(列)对应的 元素相同 ,或 成比例 ,则该行列式为0。

❗️ 性质:如果行列式中某一行(列)对应的 元素全为0 ,则该行列式为0。

❗️ 性质:若行列式的某一行(列)中所有元素都是两项的和,则该行列式可以表示为两个行列式相加。即:
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . b i 1 c i 1 b 21 c i 2 . . . b i n c i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . b i 1 b 21 . . . b i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . c i 1 c 21 . . . c i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ b_{i1}c_{i1}& b_{21}c_{i2} & ... & b_{in}c_{in}\\ ... & ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} = \\\LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ b_{i1}& b_{21} & ... & b_{in}\\ ... & ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} + \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ c_{i1}& c_{21} & ... & c_{in}\\ ... & ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} a11...bi1ci1...an1a12...b21ci2...an2...............a1n...bincin...ann = a11...bi1...an1a12...b21...an2...............a1n...bin...ann + a11...ci1...an1a12...c21...an2...............a1n...cin...ann

❗️ ⭐️ ⭐️⭐️性质:将行列式一行(列)中所有元素都乘以数k后加到另外一行(列)的对应元素上,行列式值不变。即:
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 a j 2 . . . a j n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 + k a i 1 a j 2 + k a i 2 . . . a j n + k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{j1}& a_{j2} & ... & a_{jn}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} = \\\LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{j1}+ka_{i1}& a_{j2}+ka_{i2} & ... & a_{jn}+ka_{in}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann = a11...ai1...aj1+kai1...an1a12...ai2...aj2+kai2...an2.....................a1n...ain...ajn+kain...ann

可以想一下线性方程组,在计算过程中,其中一个式子乘一个系数,加到另一个式子中进行计算、消元。

证:

可以上一个性质我们可以把行列式拆开
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 + k a i 1 a j 2 + k a i 2 . . . a j n + k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 a j 2 . . . a j n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . k a i 1 k a i 2 . . . k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{j1}+ka_{i1}& a_{j2}+ka_{i2} & ... & a_{jn}+ka_{in}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} = \\\LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{j1}& a_{j2} & ... & a_{jn}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} + \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ ka_{i1}& ka_{i2} & ... & ka_{in}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} a11...ai1...aj1+kai1...an1a12...ai2...aj2+kai2...an2.....................a1n...ain...ajn+kain...ann = a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann + a11...ai1...kai1...an1a12...ai2...kai2...an2.....................a1n...ain...kain...ann
有因为第二个行列式,某两行成倍数关系,所以第二个行列式等于0,所以:
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 + k a i 1 a j 2 + k a i 2 . . . a j n + k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 a j 2 . . . a j n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + 0 \LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{j1}+ka_{i1}& a_{j2}+ka_{i2} & ... & a_{jn}+ka_{in}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} = \\\LARGE \begin{vmatrix} a_{11}& a_{12} & ... & a_{1n}\\ ...& ... & ... & ...\\ a_{i1}& a_{i2} & ... & a_{in}\\ ... & ... & ... & ...\\ a_{j1}& a_{j2} & ... & a_{jn}\\ ...& ... & ... & ...\\ a_{n1}& a_{n2} & ... & a_{nn}\\ \end{vmatrix} + 0 a11...ai1...aj1+kai1...an1a12...ai2...aj2+kai2...an2.....................a1n...ain...ajn+kain...ann = a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann +0

例题

在这里插入图片描述

行列式按某一行(列)展开

一般来说低阶的计算比高阶行列式的计算简便,所以在计算行列式时,可以考虑将高阶行列式转换为低阶行列式。

余子式和代数余子式

❗️ 定义:在 n ( n > 1 ) \large n(n>1) n(n>1) 阶行列式 D = ∣ a i j ∣ \large D = \begin{vmatrix} a_{ij} \end{vmatrix} D= aij 中,将元素 a i j \large a_{ij} aij 所在的第 i \large i i 行和第 j \large j j 列划去(删除),剩下的元素按照原来的相对位置所构成的 n − 1 \large n-1 n1 阶行列式,称为 D \large D D 中元素 a i j \large a_{ij} aij余子式 ,记为 M i j \large M_{ij} Mij

例:
D = ∣ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ∣ \LARGE D= \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} D= a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44
a 23 \large a_{23} a23余子式 为:
M 23 = ∣ a 11 a 12 a 14 a 31 a 32 a 34 a 41 a 42 a 44 ∣ \LARGE M_{23}= \begin{vmatrix} a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} M23= a11a31a41a12a32a42a14a34a44

a i j \large a_{ij} aij 的余子式 M i j \large M_{ij} Mij 前面加上一个符号 ( − 1 ) i + j \large (-1)^{i+j} (1)i+j 后,就称为 a i j \large a_{ij} aij D \large D D 中的 代数余子式 ,记为 A i j \large A_{ij} Aij ,即 A i j = ( − 1 ) i + j M i j \large A_{ij}=(-1)^{i+j} M_{ij} Aij=(1)i+jMij

上面例子中, a 23 \large a_{23} a23代数余子式 为:
A 23 = ( − 1 ) 2 + 3 ∣ a 11 a 12 a 14 a 31 a 32 a 34 a 41 a 42 a 44 ∣ = − ∣ a 11 a 12 a 14 a 31 a 32 a 34 a 41 a 42 a 44 ∣ \LARGE A_{23}= (-1)^{2+3} \begin{vmatrix} a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} A23=(1)2+3 a11a31a41a12a32a42a14a34a44 = a11a31a41a12a32a42a14a34a44

行列式按某一行(列)展开

❗️ 定理:(行列式按行(列)展开)n阶行列式 D = ∣ a i j ∣ \large D = \begin{vmatrix} a_{ij} \end{vmatrix} D= aij 等于它的任意一行(列)中各元素与其对应的 代数余子式乘积的和 ,即:
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n , i = ( 1 , 2 , . . . , n ) \LARGE D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} , i = (1,2,...,n) D=ai1Ai1+ai2Ai2+...+ainAin,i=(1,2,...,n)

D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j , j = ( 1 , 2 , . . . , n ) \LARGE D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj} , j = (1,2,...,n) D=a1jA1j+a2jA2j+...+anjAnj,j=(1,2,...,n)

例题:

例1:

按第一行展开
D = ∣ 1 3 2 4 6 5 3 6 8 ∣ = 1 × ( − 1 ) 1 + 1 ∣ 6 5 6 8 ∣ + 3 × ( − 1 ) 1 + 2 ∣ 4 5 3 8 ∣ + 2 × ( − 1 ) 1 + 3 ∣ 4 6 3 6 ∣ = \LARGE \begin{array}{c} D=\left|\begin{array}{ccc} 1 & 3 & 2 \\ 4 & 6 & 5 \\ 3 & 6 & 8 \end{array}\right|=1 \times(-1)^{1+1}\left|\begin{array}{ll} 6 & 5 \\ 6 & 8 \end{array}\right|+ \\ 3 \times(-1)^{1+2}\left|\begin{array}{ll} 4 & 5 \\ 3 & 8 \end{array}\right|+2 \times(-1)^{1+3}\left|\begin{array}{ll} 4 & 6 \\ 3 & 6 \end{array}\right|= \end{array} D= 143366258 =1×(1)1+1 6658 +3×(1)1+2 4358 +2×(1)1+3 4366 =

例2:

在这里插入图片描述

❗️ 定理:(异乘变零定理)n阶行列式 D = ∣ a i j ∣ \large D = \begin{vmatrix} a_{ij} \end{vmatrix} D= aij 的某一行(列)的所有元素与另一行(列)中对应的元素的代数余子式乘积的和为零,即:
a i 1 A s 1 + a i 2 A s 2 + . . . + a i n A s n = 0 , ( i ≠ s ) a 1 j A 1 t + a 2 j A 2 t + . . . + a n j A n t = 0 , ( j ≠ t ) \LARGE a_{i1}A_{s1}+a_{i2}A_{s2}+...+a_{in}A_{sn}=0 , (i \ne s) \\\LARGE a_{1j}A_{1t}+a_{2j}A_{2t}+...+a_{nj}A_{nt}=0 , (j \ne t) ai1As1+ai2As2+...+ainAsn=0,(i=s)a1jA1t+a2jA2t+...+anjAnt=0,(j=t)

(不许NTR,纯爱战士狂喜)

证:
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{i1} & a_{i2} & ... & a_{in} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} a11a21...ai1...an1a12a22...ai2...an2..................a1na2n...ain...ann
假设第一行所有元素乘上第 i \large i i 行的对应元素的代数余子式,那么:
a 11 A i 1 + a 12 A i 2 + . . . + a 1 n A i n \LARGE a_{11}A_{i1}+a_{12}A_{i2}+...+a_{1n}A_{in} a11Ai1+a12Ai2+...+a1nAin
上面的式子,根据 行列式按行(列)展开 又可以变成:
a 11 A i 1 + a 12 A i 2 + . . . + a 1 n A i n = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a 11 a 12 . . . a 1 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE a_{11}A_{i1}+a_{12}A_{i2}+...+a_{1n}A_{in} = \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{11} & a_{12} & ... & a_{1n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} a11Ai1+a12Ai2+...+a1nAin= a11a21...a11...an1a12a22...a12...an2..................a1na2n...a1n...ann
上面的行列式,第一行元素和第 i \large i i 行元素对应相等,所以行列式为0。所以 异乘变零
a 11 A i 1 + a 12 A i 2 + . . . + a 1 n A i n = 0 \LARGE a_{11}A_{i1}+a_{12}A_{i2}+...+a_{1n}A_{in} = 0 a11Ai1+a12Ai2+...+a1nAin=0

拉普拉斯定理

行列式的计算

“杨辉三角”

在这里插入图片描述

加边法

在这里插入图片描述

范德蒙行列式

在这里插入图片描述

注意 :是 ∏ 1 ≤ j < i ≤ n \LARGE \prod_{1 \leq j<i \leq n} 1j<in j \large j j 是小于 i \large i i ,不是小于等于。

例如:n=4
D n = ( x 2 − x 1 ) ( x 3 − x 1 ) ( x 4 − x 1 ) ( x 3 − x 2 ) ( x 4 − x 2 ) ( x 4 − x 3 ) \LARGE D_n = (x_2-x_1)(x_3-x_1)(x_4-x_1) \\\LARGE (x_3-x_2)(x_4-x_2) \\\LARGE (x_4-x_3) Dn=(x2x1)(x3x1)(x4x1)(x3x2)(x4x2)(x4x3)

一定是“后面”的减法“前面”

反对称矩阵

在这里插入图片描述

反对称矩阵=0。

  • 主对角线全为0
  • 上下位置对应元素(关于主对角线对称),互为相反数

克莱姆(Cramer)法则

设定含有n个未知量n个方程组的线性方程组
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \LARGE \left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 +...+a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 +...+a_{2n}x_n = b_2 \\ ......\\ a_{n1}x_1 + a_{n2}x_2 +...+a_{nn}x_n = b_n \\ \end{matrix}\right. a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn
我们称它的系数 a i j \large a_{ij} aij 所构成的行列式
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \LARGE \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} a11a21...an1a12a22...an2............a1na2n...ann
为此方程组的 系数行列式

D \large D D 的第1,2,…,n列分别换成常数项 b 1 , b 2 , . . , b n \large b_1,b_2,..,b_n b1,b2,..,bn 后,所得到的n个n阶行列式依次记为 D 1 , D 2 , . . . , D n \large D_1,D_2,...,D_n D1,D2,...,Dn ,即
D 1 = ∣ b 1 a 12 … a 1 n b 2 a 22 … a 2 n … … … … b n a n 2 … a n n ∣ , D 2 = ∣ a 11 b 1 … a 1 n a 21 b 2 … a 2 n … … … … a n 1 b n … a n n ∣ D n = ∣ a 11 a 12 … b 1 a 21 a 22 … b 2 … … … … a n 1 a n 2 … b n ∣ \LARGE \begin{array}{c} D_{1}=\left|\begin{array}{llll} b_{1} & a_{12} & \ldots & a_{1 n} \\ b_{2} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ b_{n} & a_{n 2} & \ldots & a_{n n} \end{array}\right|, D_{2}=\left|\begin{array}{llll} a_{11} & b_{1} & \ldots & a_{1 n} \\ a_{21} & b_{2} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & b_{n} & \ldots & a_{n n} \end{array}\right| \\ D_{n}=\left|\begin{array}{cccc} a_{11} & a_{12} & \ldots & b_{1} \\ a_{21} & a_{22} & \ldots & b_{2} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & b_{n} \end{array}\right| \end{array} D1= b1b2bna12a22an2a1na2nann ,D2= a11a21an1b1b2bna1na2nann Dn= a11a21an1a12a22an2b1b2bn

❗️ 定理:(克莱姆法则)含有n个方程n个未知量的线性方程组,当它的系数行列式 D ≠ 0 \large D \ne 0 D=0 时,有唯一解:
x j = D j D , ( j = 1 , 2 , . . . , n ) \LARGE x_j = \frac{D_j}{D} ,(j=1,2,...,n) xj=DDj,(j=1,2,...,n)

当线性方程组的常数项全为零时:
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = 0 . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = 0 \LARGE \left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 +...+a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 +...+a_{2n}x_n = 0 \\ ......\\ a_{n1}x_1 + a_{n2}x_2 +...+a_{nn}x_n = 0 \\ \end{matrix}\right. a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0......an1x1+an2x2+...+annxn=0
称为 齐次线性方程组

显然它是肯定有解的 x 1 = 0 , x 2 = 0 , . . . , x n = 0 \large x_1=0,x_2=0,...,x_n=0 x1=0,x2=0,...,xn=0 ,此解称为齐次线性方程组的 零解 。除此以外的解,称为齐次线性方程组的 非零解

由克莱姆法则可以得出以下定理:

  • D ≠ 0 ( 符合克莱姆法则 ) ⟺ 齐次线性方程组只有零解 \large D \ne 0 (符合克莱姆法则) \Longleftrightarrow 齐次线性方程组只有零解 D=0(符合克莱姆法则)齐次线性方程组只有零解
  • D = 0 ( 符合克莱姆法则 ) ⟺ 齐次线性方程组有非零解 \large D = 0 (符合克莱姆法则) \Longleftrightarrow 齐次线性方程组有非零解 D=0(符合克莱姆法则)齐次线性方程组有非零解
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nepqiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值