极限与连续和可导的关系

一、首先介绍三个定义。

1.设函数 f ( x ) f(x) f(x) x 0 x_0 x0的去心邻域 U 0 ( x 0 , δ ) U^{0}(x_0,\delta) U0(x0,δ)内有定义,若 lim ⁡ x → x 0 \lim_{x\rightarrow x_0} limxx0存在,则称称函数在某点极限存在。

依据极限与单侧极限的关系,有如下结论:

lim ⁡ x → x 0 f ( x ) = A ⇐ ⇒ lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x0}f(x)=A \Leftarrow \Rightarrow \lim_{x\rightarrow x_0^{-}}f(x)=\lim_{x\rightarrow x_0^{+}}f(x) xx0limf(x)=Axx0limf(x)=xx0+limf(x)

2.设函数 f ( x ) f(x) f(x) x 0 x_0 x0的邻域 U ( x 0 , δ ) U(x_0,\delta) U(x0,δ)内有定义,若有 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x)=f(x_0) limxx0f(x)=f(x0),则称函数在该点连续。

依据连续与单侧连续的关系,有如下结论:

函数在某点连续的充要条件是函数在该点既是左连续也是右连续,即是:

lim ⁡ x → x 0 f ( x ) = f ( x 0 ) ⇐ ⇒ lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \begin{aligned} \lim_{x\rightarrow x_0}f(x)=f(x_0) & \Leftarrow \Rightarrow \\ & \lim_{x\rightarrow x_0^+}f(x)=f(x_0) \\ & \lim_{x\rightarrow x_0^-}f(x)=f(x_0) \end{aligned} xx0limf(x)=f(x0)xx0+limf(x)=f(x0)xx0limf(x)=f(x0)

3.设函数 f ( x ) f(x) f(x) x 0 x_0 x0的去心邻域 U ( x 0 , δ ) U(x_0,\delta) U(x0,δ)内有定义,如果极限 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \rightarrow x_0}{f(x)-f(x_0) \over x-x_0} limxx0xx0f(x)f(x0)存在,则称函数在该点可导。

依据导数与单侧导数的关系,有如下结论:

函数在某点可导的充要条件是函数在该点既是左可导也是右可导,且左导数等于右导数,即是:

lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 e x i s t s ⇐ ⇒ lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 e x i s t s lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 e x i s t s A n d lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 \begin{aligned} \lim_{x \rightarrow x_0}{f(x)-f(x_0) \over x-x_0} exists & \Leftarrow \Rightarrow \\ & \lim_{x \rightarrow x_0^+}{f(x)-f(x_0) \over x-x_0} exists \\ & \lim_{x \rightarrow x_0^-}{f(x)-f(x_0) \over x-x_0} exists \\ & And \lim_{x \rightarrow x_0^+}{f(x)-f(x_0) \over x-x_0}=\lim_{x \rightarrow x_0^-}{f(x)-f(x_0) \over x-x_0} \end{aligned} xx0limxx0f(x)f(x0)existsxx0+limxx0f(x)f(x0)existsxx0limxx0f(x)f(x0)existsAndxx0+limxx0f(x)f(x0)=xx0limxx0f(x)f(x0)

二、其次,简要说明函数在某点的极限、函数在某点连续和函数在某点可导的关系

1、函数在某点连续,则可推出函数在该点的极限存在。

设函数 f ( x ) f(x) f(x) x 0 x_0 x0处连续,则有 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x)=f(x0) limxx0f(x)=f(x0),所以函数 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处有极限(极限就是 f ( x 0 ) f(x_0) f(x0))。

该结论的逆命题不成立,即函数在某点的极限存在,函数在该点不一定连续 —— 可去间断点就是支持该结论的例子。

2、函数在某点可导,则可推出函数在该点连续。

设函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导,则有 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \rightarrow x_0}{f(x)-f(x_0) \over x-x_0} limxx0xx0f(x)f(x0)存在,

(按等价无穷小知识,因为分母 x − x 0 x-x_0 xx0 x → x 0 x\rightarrow x_0 xx0时的无穷小)所以 lim ⁡ x → x 0 ( f ( x ) − f ( x 0 ) ) = 0 \lim_{x \rightarrow x_0}(f(x)-f(x_0))=0 limxx0(f(x)f(x0))=0,则有 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x)=f(x_0) limxx0f(x)=f(x0),所以函数 f ( x ) f(x) f(x) x 0 x_0 x0处连续。

该结论的逆命题不成立,即函数在某点连续,函数在该点不一定可导 —— y = ∣ x ∣ y=|x| y=x y = x 3 y=\sqrt[3]x y=3x 就是支持该结论的例子。

三、多熟悉以下说法

函数在某点(左、右)可导,则表明函数在该点的因变量变化( Δ y \Delta y Δy)和自变量变化( Δ x \Delta x Δx)之比在该点的(左、右)极限存在;

在导数定义中,可以有多种形式描述那个极限,比如:

lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} xx0limxx0f(x)f(x0)

lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} Δx0limΔxf(x+Δx)f(x)

lim ⁡ Δ x → 0 Δ y Δ x \lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x} Δx0limΔxΔy

lim ⁡ h → 0 f ( x ) − f ( x − h ) h \lim_{h\rightarrow 0}\frac{f(x)-f(x-h)}{h} h0limhf(x)f(xh)

等等。

  • 32
    点赞
  • 76
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值