LLM-Rec:基于提示大语言模型的个性化推荐

LLM-Rec:基于提示大语言模型的个性化推荐

1. 基本信息

64e2ddfd17cb4001ace6ac5e06523e58.png
  • 论文题目:LLM-Rec: Personalized Recommendation via Prompting Large Language Models

  • 作者:Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Jiebo Luo

  • 机构:University of Rochester, University of California Los Angeles, Meta AI, University of Rochester

2. 摘要

本文研究了通过输入增强来提高大语言模型个性化内容推荐性能的各种提示策略。提出的方法LLM-Rec包括四种不同的提示策略:1)基本提示 2)推荐驱动提示 3)参与指导提示 4)推荐驱动+参与指导提示。实验结果表明,将原始内容描述与LLM使用这些提示策略生成的增强输入文本相结合,可以提高推荐性能。这一发现强调了在大语言模型中融入多样化的提示和输入增强技术以提高个性化内容推荐能力的重要性。

a67269a213a82ed78b43a944b5c9834e.png

3. 介绍

  • 本文研究了利用大语言模型(LLM)进行输入增强的提示策略,以提高个性化内容推荐。

  • 之前的研究更多关注直接利用LLM作为推荐模型。本文从不同的角度出发,探索用于增强输入文本的提示策略,以发挥LLM的潜力。

  • 本文的主要贡献是提出了LLM-Rec提示,它包含基本提示、推荐驱动提示、参与指导提示以及推荐驱动与参与指导组合提示等策略。这些策略旨在增强LLM生成的输入文本,提高内容推荐的准确性和相关性。

4. 方法

本文提出了四种提示策略:

  1. 基本提示:包含三种基本提示, , ,分别指示LLM进行原始内容描述的释义、摘要和归纳。

  2. 推荐驱动提示:在基本提示的基础上加入推荐驱动指示,得到, , 。明确生成的内容描述用于内容推荐,引导LLM聚焦在关键特征上。

  3. 参与指导提示:,结合目标项目及其重要邻居项目的内容描述,利用用户参与指导LLM生成与用户偏好更符的内容。

  4. 推荐驱动与参与指导组合提示:,融合推荐驱动和参与指导提示的优点。

4b861ff1b56431e34dabcbd80fe41e02.png 6fb020b2370fbed420903931e555ca12.png

5. 实验发现

  • 实验结果表明,除了基准外,其他方法中LLM生成的增强文本与原始内容描述的组合都可以提高推荐性能。

  • 推荐驱动提示主要增强了面向推荐的文本生成。

  • 相比基本提示,的推荐性能有所提升,表明参与指导提示让LLM生成的内容更符合用户偏好。

  • 的推荐性能最好,表明推荐驱动和参与指导提示的组合作用。

4388dd30a540f4c971c6057c5a7c07d7.png

6. 结论

本文介绍了LLM-Rec提示策略,利用大语言模型进行输入增强,以提高个性化内容推荐。通过对LLM-Rec四种变体的全面实验,观察到增强输入文本与原始内容描述的组合可显著提高推荐性能。这些发现强调了使用LLM和策略化提示技术来提高个性化内容推荐的准确性和相关性的潜力。本文的研究凸显了创新方法对利用LLM进行内容推荐的重要性,并展示了输入增强在改进推荐性能方面的价值。随着个性化内容推荐在各个领域继续发挥关键作用,研究为有效运用LLM提供提供了洞见,以提供增强的推荐体验。

一起交流

想和你一起学习进步!『NewBeeNLP』目前已经建立了多个不同方向交流群(机器学习 / 深度学习 / 自然语言处理 / 搜索推荐 / 图网络 / 面试交流 / 等),名额有限,赶紧添加下方微信加入一起讨论交流吧!(注意一定o要备注信息才能通过)

8be1e76242502fc92488172899498d6c.jpeg

ae0dc02b184c9ea90c86760d6712384c.gif

### 关于 KGLLM-Rec 的介绍 KGLLM-Rec 是一种基于大型语言模型 (LLM) 和知识图谱 (KG) 结合的推荐系统框架。它旨在通过引入外部知识增强传统推荐系统的性能,从而提供更高质量的个性化推荐服务。以下是关于 KGLLM-Rec 的详细介绍: #### 1. **核心概念** KGLLM-Rec 将知识图谱中的结构化信息与大规模预训练语言模型的能力相结合,以解决传统推荐系统中存在的冷启动问题和数据稀疏性问题[^1]。具体来说,该方法利用知识图谱中的实体关系作为补充信息,帮助模型更好地理解用户兴趣和物品特征。 #### 2. **技术架构** KGLLM-Rec 的主要组成部分包括以下几个模块: - **知识嵌入模块**: 基于 TransE 或其他知识图谱嵌入算法,将 KG 中的节点和边映射到低维向量空间[^3]。 - **语言建模模块**: 利用 Transformer 架构的大规模预训练语言模型(如 BERT、GPT),捕获用户的自然语言描述及其偏好模式。 - **交互式推理模块**: 支持用户与系统之间的多轮对话,动态调整推荐结果并解释推荐原因。 #### 3. **应用场景** KGLLM-Rec 可广泛应用于电子商务平台、社交媒体应用以及其他需要精准内容分发的服务领域。例如,在线购物网站可以通过集成此类技术为用户提供更加个性化的商品建议;新闻客户端则可以依据读者的历史行为推送与其兴趣相符的文章链接等资源[^5]。 #### 4. **实现细节** 为了便于开发者快速上手开发自己的版本, 下面给出一段简单的 Python 实现伪代码: ```python import torch from transformers import BertModel class KGLLM_Rec(torch.nn.Module): def __init__(self, kg_embedding_dim=128, bert_hidden_size=768): super(KGLLM_Rec, self).__init__() # 加载预训练BERT模型 self.bert = BertModel.from_pretrained('bert-base-uncased') # 定义知识图谱嵌入层 self.kg_embeddings = torch.nn.Embedding(num_entities, kg_embedding_dim) def forward(self, user_ids, item_ids, texts): # 获取文本表示 text_outputs = self.bert(texts)[0][:, 0, :] # CLS token # 获取KG嵌入 entity_embs = self.kg_embeddings(item_ids) # 融合两种表征 combined_features = torch.cat([text_outputs, entity_embs], dim=-1) return combined_features ``` 上述代码片段展示了如何构建一个基础版的 KGLLM-Rec 模型实例。实际部署过程中可能还需要考虑更多因素比如优化目标函数设计等等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值