01背包问题和完全背包问题

01背包问题

时间限制:20000ms
单点时限:1000ms
内存限制:256MB

描述

且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!

小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要need(i)张奖券进行兑换,同时也只能兑换一次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个正整数N和M,表示奖品的个数,以及小Ho手中的奖券数。

接下来的n行描述每一行描述一个奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。

测试数据保证

对于100%的数据,N的值不超过500,M的值不超过10^5

对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出

对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
样例输入

5 1000
144 990
487 436
210 673
567 58
1056 897

样例输出

2099

这个问题是典型的动态规划问题,要考虑两个性质:重复子问题无后效性
首先来找子问题,用best(x)表示手里有x张奖券时能够获得最高喜好的和,那么我们要求的就是best(M),这里有点像最少硬币找零问题-动态规划,但是这样无法分解成同一个子问题;因为在求解bset(x)还是会面临N个奖品,选择或不选择,还是有 2N 中选法。
做点改动,用best(i,x)表示前i中奖品是否选择,所需奖券不超过x时的最优解决方案,那么最终求解的便是best(N,M)。
要求解best(N,M),先求解best(N-1,M)。假设此时best(N-1,M)已知,那么求best(N,M)时,只需要考虑第N个奖品要不要取了,如果取,则best(N,M)=best(N-1,M-need(N))+value(N);如果不取,那么best(N,M)=best(N-1,M)。这样便找到了递推公式

best(i,j)=max{best(i-1,j),best(i-1,j-need(i)+value(i)},i>1

在计算时,只需要按照i从小到大计算即可。

for j=0……M
    best(0,j)=0;
for i=1……N
    for j=0……M
        if(j<need(i))//j值不够
            best(i,j)=best(i-1,j);
        else
            best(i,j)=max{best(i-1,j),best(i-1,j-need(i)+value(i)}  

编写代码测试:

#include<iostream>
const int maxN = 501;
const unsigned int maxM = 100001;
long int best[maxN][maxM];
inline long int max(long int a, long int b)
{
    return a > b ? a : b;
}
int main()
{
    int N;
    unsigned int M;
    std::cin >> N >> M;
    long int* need = new long int[N + 1];
    int* value = new int[M + 1];
    need[0] = 0;
    value[0] = 0;
    for (int i = 1; i <= N; ++i)
        std::cin >> need[i] >> value[i];
    for (int j = 0; j <= M; ++j)
        best[0][j] = 0;

    for (int i = 1; i <= N; ++i)
    {
        for (int j = 0; j <= M; ++j)
        {
            if (j < need[i])//j值不够大
                best[i][j] = best[i - 1][j];
            else
                best[i][j] = max(best[i - 1][j - need[i]] + value[i], best[i - 1][j]);
        }
    }
    delete[] need;
    delete[] value;
    std::cout << best[N ][M] << std::endl;

}

在计算best[i][j]时用到的是best[i-1][0……j],这样算来,其实best数组只需要两行即可,这两行可以交替使用。
在计算状态best(iA,jA)时,依赖状态best(iA-1,0……JA),状态best(iA-1,jA+1……M)不起作用。那么在计算第二个循环时,是for(int j=0;j<=M;++j),如果把j倒过来计算,即for(int j=M;j>=1;--j);这样可以只开辟一维数组best(M)即可。

for j=0……M
    best(j)=0;
for i=1……N
    for j=M……1
        if j>=need(i)
            do best(j)=max(best(j),best(j-need(i))+value(i)

编写代码测试:

#include<iostream>
inline long int max(long int a, long int b)
{
    return a > b ? a : b;
}
int main()
{
    int N;
    unsigned int M;
    std::cin >> N >> M;
    long int* need = new long int[N + 1];
    int* value = new int[M + 1];
    need[0] = 0;
    value[0] = 0;
    for (int i = 1; i <= N; ++i)
        std::cin >> need[i] >> value[i];
    long int* best = new long int[M + 1];
    for (int j = 0; j <= M; ++j)
        best[j] = 0;
    for (int i = 1; i <= N; ++i)
    {
        for (int j = M; j >= 1; --j)
        {
            if (j >= need[i])
                best[j] = max(best[j], best[j - need[i]] + value[i]);
            else
                best[j] = best[j];
        }
    }
    std::cout << best[M] << std::endl;
    delete[] best;
    return 0;
}

完全背包问题

题目1 : 完全背包
时间限制:20000ms
单点时限:1000ms
内存限制:256MB

描述

且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!

等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!

小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。

接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。

测试数据保证

对于100%的数据,N的值不超过500,M的值不超过10^5

对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出

对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
样例输入

5 1000
144 990
487 436
210 673
567 58
1056 897

样例输出

5940

这个问题和01背包不同的就是,每个奖品可以选择多件。在01背包问题中,每个奖品要么选择1件,要么不选择,所以叫做01背包问题。和之前的分析一些样,可以设一个best(i,x),表示前i个奖品做出选择之后(可以使选择多件),总奖券不超过x时,价值最大的值。
那么:

best(i,x)=max{best(i1,xneed(i)k)+kvalue(i)},where0kx/need(i)

伪代码如下:

for i=1……N
    for x=0……M
        for k=0……x/need(i)
            best(i,x)=max{best(i,x),best(i-1,x-need(i)*k)+value(i)*k

这样看来貌似没什么问题,时间复杂度也可以接受。但是貌似有点奇怪。
这是因为上面的递归公式有冗余计算,例如下面两个式子

best(i,x)=max{best(i1,xneed(i)k)+value(i)k},where0kx/need(i)

best(i,xneed(i))=max{best(i1,xneed(i)k)+value(i)k},where1kx/need(i)

在计算上面第一个式子时,又把第二个式子中大部分重新计算了一边。
那么递归式子其实应该是这样
best(i,x)=max{best(i,xneed(i))+value(i),best(i1,x)}

伪码如下:

for i=1……N
    for x=0……M
        if(need(i)>x)
            best(i,x)=best(i-1,x)
        else
            best(i,x)=max{best(i-1,x),best(i,x-need(i))+value(i)}

最后考虑内存优化,在计算01背包问题时,j(即x)是从M到0,因为01背包问题的子问题是(i-1)种物品的基础上来解决当前问题(i种物品)。而完全背包问题的子问题是向i种物品的背包中添加第i中物品。
测试代码如下:

#include<iostream>
inline long int max(long int a, long int b)
{
    return a > b ? a : b;
}
int main()
{
    int N;
    unsigned int M;
    std::cin >> N >> M;
    long int* need = new long int[N + 1];
    int* value = new int[M + 1];
    need[0] = 0;
    value[0] = 0;
    for (int i = 1; i <= N; ++i)
        std::cin >> need[i] >> value[i];
    long int* best = new long int[M + 1];
    for (int j = 0; j <= M; ++j)
        best[j] = 0;
    for (int i = 1; i <= N; ++i)
    {
        for (int j = 1; j <= M; ++j)
        {
            if (j >= need[i])
                best[j] = max(best[j], best[j - need[i]] + value[i]);
            else
                best[j] = best[j];
        }
    }
    std::cout << best[M] << std::endl;
    delete[] best;
    delete[] need;
    delete[] value;
    return 0;
}
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值