一. 概述
美国政府在 1997 年 9 月 12 日公开征集更高效更安全的替代 DES 加密算法,第一轮共有 15 种算法入选,其中 5 种算法入围了决赛,分别是 MARS,RC6,Rijndael,Serpent 和 Twofish。又经过 3 年的验证、评测及公众讨论之后 Rijndael 算法最终入选。
Rijndael 算法之所以最终能够被选为AES的原因是其安全、性能好、效率高、实用灵活。
Rijndael 算法支持多种分组及密钥长度,介于 128-256 之间所有 32 的倍数均可,最小支持 128 位,最大 256 位,而 AES 标准支持的分组大小固定为 128 位,密钥长度有 3 种选择:128 位、192 位及 256 位。
二. AES 算法的数学基础
Rijndaels 算法中的许多运算是按字节和 4 字节长的字来定义的。把一个字节看成是在有限域 GF(28) 上的一个元素。有限域(Finite Field)又名伽罗瓦域(Galois field),简单言之就是一个满足特定规则的集合,集合中的元素可以进行加减乘除运算,且运算结果也是属于此集合。
1. 有限域
AES的基础域是有限域 GF(28)
- 一个字节的全体 256 种取值构成一个 GF(28)
- 一个 GF(2) 上的 8 次既约多项式可生成一个 GF(28)
- GF(28) 的全体元素构成加法交换群、线性空间。
- GF(28) 的非零元素构成乘法循环群。
2. AES 在有限域上的表示
有限域 GF(28) 上的元素有多种表示方法,为了方便,Rijndaels 算法采用多项式表示法,下面是与还表示方法相关的几个定义
定义 1 : 一个由比特位 b7b6b5b4b3b2b1b0 组成的字节可表示成系数为 (0, 1) 的二进制多项式:b7X7 + b6X6 + b5X5 + b4X4 + b3X3 + b2X2 + b1X + b0
例:例:字节57=01010111的多项式表示为:
定义 2 : 在 GF(28) 上的加法定义为二进制多项式的加法,其系数按位模 2 加。
例: 57+83=D4 等价于
定义 3 : 在 GF(28) 上的乘法定义为二进制多项式的乘积模一个次数为8的不可约多项式
其系数的十六进制表示为 11B
,例: 57×83=C1 等价于
定义 4 : 在 GF(28) 中,二进制多项式 b(x) 满足乘法逆为式a(x)b(x) mod m(x) = 1
的二进制多项式。
定义 5 : 在 GF(28) 中,倍乘函数 xtime(b(x)) 定义为x·b(x) mod m(x)
。具体的运算规则是:把字节B左移一位,若 b7=1, 则减去 m(x),而在 GF(28) 上加减法等价,即加上 m(x)。例:
3. AES 的字表示与运算
3.1. 字表示
AES 数据处理的单位是字节和字,一个字由四个字节组成,表示为系数取自 GF(28) 上的次数低于 4 次的多项式,例如: 字57 83 4A D1
等价于
3.2. 字运算
字运算是基于上述关于 AES 在 GF(28) 中的运算规则的。
字加法 : 两多项式系数按位模 2 加
字乘法 : 设 a 和 c 是两个字, a(x) 和 c(x) 是其字多项式, AES 定义 a 和 c 的乘积 b 为
如:设 a(x)、c(x) 和 b(x) 分别分别如下面(图 2-1)中所示, 由 b(x) = a(x)c(x) mod x4+1 得(图 2-1)表达式组
写成矩阵形式如下面的(图 2-3)所示,x4+1 是可约多项式,字 c(x) 不一定有逆,但 AES 选择的 c(x) 有逆,
从而使得 b(x) 的表达式可以使用上面(图 2-4)的矩阵表示,从而使得下面的MixColumns
变换变为矩阵的乘法运算。
字 x 乘法 :
矩阵形式如下图所示,因为模 x4+1,字 x 乘法相当于按字节循环移位
三. AES 的加密过程
1. 状态
在 AES 中除了字节和字外,还有一种被称为状态的数据处理方式,它用来存储加解密过程中的中间数据,一般用以字节为元素的矩阵或二维数组表示。
如果用 Nb 代表明密文所含的字数。 Nk 代表密钥所含的字数。 Nr 代表迭代轮数,则当 Nb 和 Nk 都等于 4 时的状态与密钥数组分别如下面的(图 3-1)和(图 3-2) 所示
根据 Rijndael 算法的定义,加密轮数会针对不同的分组及不同的密钥长度选择不同的数值
2. 加密过程概述
AES 加密算法的主要步骤有
- 轮密钥生成
- 初始轮密钥加变换:将最初的第一个(Nk 个字长)轮密钥亦即主密钥与初始状态进行比特位异或操作
- 标准轮(前 9, 11 或 13 轮)变换:
- S 盒变换
- 行移位变换
- 列混合变换
- 轮密钥加变换
- 最后一轮(第10, 12 或 14 轮)变换
- S 盒变换
- 行移位变换
- 轮密钥加变换
3. AES 有限域上的加法
/**
* 有限域GF(2)上的加法,<tt>modeSize</tt>位的异或操作
* xor corresponding byte in two state arrays
* @param first first operand
* @param second second operand
* @return xor result
*/
private short[][] xor(short[][] first, short[][] second) {
short[][] result = new short[first.length][4];
int length = first.length;
for (short i = 0; i < length; i++) {
for (short j = 0; j < length; j++) {
result[i][j] = (short) (first[i][j] ^ second[i][j]);
}
}
return result;
}
4. 轮密钥生成 (GenerateRoundKeys)
轮密钥根据密钥产生算法通过主密钥得到。密钥产生分两步进行:密钥扩展和轮密钥选择,且郡守以下规则:
- 轮密钥的比特总数为明文数据块长度与轮数加 1 的积。例如,对于 128 位的分组长度和 10 轮迭代,轮密钥长度为 128 x (10 + 1) = 1408 位,即 11 个状态长
- 首先将用户密钥扩展为一个扩展密钥
- 再从扩展密钥中选出轮密钥:第一个轮密钥由扩展中的前Nb个字组成(即原主密钥),第二个轮密钥是接下来的 Nb 个字,以此类推。
4.1. 密钥扩展
用一个字元素的一维数组 W[Nb*(Nr+1)]
表示扩展密钥。把密钥放在该数组最开始的 Nk 个字中,其它的字由它前面的字经过处理后得到。分 Nk ≤ 6 和 Nk > 6 两种密钥扩展算法:
① Nk ≤ 6的密钥扩展
- 最前面的 Nk 个字是由主密钥填充
- 之后的每一个字 W[j] 等于前面的字 W[j-1] 与 Nk 个位置之前的字 W[j-Nk] 的异或
- 而且对于 Nk 的整数倍的位置处的字,在异或之前,对 W[j-1] 进行 Rotl 变换和 ByteSub 变换,再异或一个轮常数 Rcon 。
Rotl 是一个字里的字节循环左移函数, 设 W =(A, B, C, D) , 则 Rotl(W) = (B, C, D, A)。 „ 轮常数Rcon 与 Nk 无关,且定义为:
- Rcon[i] = (RC[i], ‘00’, ‘00’, ‘00’),
- RC[0] = ‘01’,
- RC[i] = xtime(RC[i-1])
② Nk > 6 的密钥扩展
与 Nk ≤ 6 的密钥扩展相比, Nk > 6 的密钥扩展的不同之处在于:如果 j 被 Nk 除的余数=4,则在异或之前,对 W[j-1]进行 ByteSub 变换。
增加 ByteSub 变换,是因为当 Nk > 6 时密钥很长,仅仅对 Nk 的整数倍的位置处的字进行 ByteSub 变换,就显得 ByteSub 变换的密度较稀,安全程度不够强。
4.2. 轮密钥的选择
根据分组的大小,依次从扩展密钥中取出轮密钥。 前面的 Nb 个字作为轮密钥 0,接下来的 Nb 个字作为轮密钥 1,以此类推
4.3. 代码实现
/**
* 轮密钥扩展:将1个状态长度的主密钥扩展成<tt>rounds + 1</tt>个状态长度的轮密钥数组
* generation of round keys
* @param originalKey original cipher key
* @return round keys
*/
private short[][] generateRoundKeys(short[][] originalKey) {
short[][] roundKeys = new short[44][4];
int keyWordCount = originalKey.length;
// 1. copy the original cipher words into the first four words of the roundKeys
System.arraycopy(originalKey, 0, roundKeys, 0, keyWordCount);
// 2. extension from previous word
for (int i = keyWordCount; i < keyWordCount * 11; i++) {
short[] temp = roundKeys[i - 1];
if (i % keyWordCount == 0) {
temp = xor(substituteWord(leftShift(temp)), AESConstants.R_CON[i / keyWordCount]);
}
roundKeys[i] = xor(roundKeys[i - keyWordCount], temp);
}
return roundKeys;
}
5. AES 基本变换
5.1. S 盒变换
一种作用在状态中每一个字节上的非线性变换,对比于 DES
- 因为 AES-126 明文数据块为 16 个字节,所以 AES 使用 16 个相同的S盒(其实是可重复 16 次使用同一个); DES 使用 8 个不相同的S盒。
- AES 的 S 盒有 8 位输入 8 位输出,是一种非线性置换;DES 的 S 盒有 6 位输入 4 位输出,是一种非线性压缩。
AES 的 S 盒变换可按以下两步进行:
- 将输入字节用其 GF(28) 上的逆来代替
- 对上面的结果作如下的仿射变换: (以 x0- x7 作输入,以 y0- y7 作输出)
需要注意的是:
- S 盒变换的第一步是把字节的值用它的乘法逆来代替, 是一种非线性变换。
- 第二步是仿射运算,是线性变换。
- 由于系数矩阵中每列都含有 5 个 1,这说明改变输入中的任意一位,将影响输出中的5位发生变化。
- 由于系数矩阵中每行都含有 5 个 1,这说明输出中的每一位,都与输入中的 5 位相关。
代码实现
通过建表查表代替运算,同时将该操作拆分为substituteState
、substituteWord
和substituteByte
三个子操作
实现 S 盒最快的方法就是,直接算出 S 盒的变换结果并造表存储,使用时直接查表(表大小为 256 个字节)。查表的方法是:取一个字节的高低 4 位分别作为行号和列号,通过行列号定位到的表中的元素即为新的替代字节。如下图左表中的 d4,
使用代码实现这一过程
/**
* 状态替代:对状态中的每个字进行字替代
* substitute value of a state array using byte as unit
* @param state state array to be substituted
* @return substitution result, a new state array
*/
private short[][] substituteState(short[][] state, short[][] substituteTable) {
for (int i = 0; i < state.length; i++) {
for (int j = 0; j < 4 ; j++) {
state[i][j] = substituteByte(state[i][j], substituteTable);
}
}
return state;
}
/**
* 字替代:对字中每个字节进行字节替代
* substitute all bytes in a word through SBox
* @param aWord a word, aka 4 bytes
* @return substitution result, a new and disrupted word
*/
private short[] substituteWord(short[] aWord) {
for (int i = 0; i < 4; i++) {
aWord[i] = substituteByte(aWord[i], AESConstants.SUBSTITUTE_BOX);
}
return aWord;
}
/**
* 字节替代: 取一个字的高四位和低四位分别作为S盒的行号和列号,
* 通过行列号取S盒中的字节替代原字节
* substitute value of a byte through <tt>SBox</tt>
* @param originalByte byte to be substituted
* @return substitution result, a new byte
*/
private short substituteByte(short originalByte, short[][] substituteTable) {
// low 4 bits in originByte
int low4Bits = originalByte & 0x000f;
// high 4 bits in originByte
int high4Bits = (originalByte >> 4) & 0x000f;
// obtain value in <tt>AESConstants.SUBSTITUTE_BOX</tt>
return substituteTable[high4Bits][low4Bits];
}
5.2. 行移位变换
行移位变换对状态的行进行循环移位。 第 0 行不移位,第 1 行移 C1 字节, 第 2 行移 C2 字节, 第 3 行移 C3 字节。C1, C2, C3 按下表取值:
行移位变换属于置换,属于线性变换,本质在于把数据打乱、重排,起扩散作用。
代码实现
/**
* 行移位变换:对状态的行进行循环左移,左移规则在<tt>shiftingTable</tt>中定义
* row shifting operation, rotate over N which is defined in
* <tt>AESConstants.SHIFTING_TABLE</tt> bytes of corresponding rows
* @param state state array of the original plaintext
* @return a new state array
*/
private static short[][] shiftRows(short[][] state, short[][] shiftingTable) {
short[][] result = new short[state.length][4];
for (int j = 0; j < 4; j++) { // local byte in a word
for (int i = 0; i < state.length; i++) { // local word
result[i][j] = state[shiftingTable[i][j]][j];
}
}
return result;
}
5.3. 列混合变换
列混合变换把状态的列视为 GF(28) 上的多项式 a(x), 乘以一个固定的多项式 c(x), 并模 x4+1:
需要注意的是:
- 列混合变换属于线性变换,起扩散作用。
- c(x) 与 x4 + 1 互素,从而保证 c(x) 存在逆多项式 d(x), 而 c(x)d(x) = 1 mod x4 + 1 。 只有逆多项式 d(x) 存在,才能正确进行解密
代码实现
/**
* 列混合变换:状态数组与多项式等价矩阵进行有限域GF(2)上的矩阵乘法
* @param state 状态数组
* @param table 多项式等价矩阵
* @return 列混合变换后的新状态
*/
private short[][] mixColumns(short[][] state, short[][] table) {
short[][] result = new short[state.length][4];
for (int i = 0; i < state.length; i++) {
result[i] = matrixMultiply(state[i], table);
}
return result;
}
/**
* 一个字与多项式等价数组在有限域GF(2)上的乘法操作
* multiplication between a word of a state and a irreducible
* polynomial <tt>C(x)=03x^3+01x^2+01^2+01x+02</tt> which is replaced as a
* constant table <tt>AESConstants.CX</tt>
* (aes-128: 4x4 x 4x1 = 4x1)
* @param aWord a word of a state
* @return multiplication result, a new word
*/
private short[] matrixMultiply(short[] aWord, short[][] table) {
short[] result = new short[4];
for (int i = 0; i < 4; i++) {
result[i] = wordMultiply(table[i], aWord);
}
return result;
}
/**
* 两个字在有限域GF(2)上的乘法操作
* multiplication between two words
* @param firstWord first operand
* @param secondWord second operand
* @return multiplication result, a byte actually
*/
private short wordMultiply(short[] firstWord, short[] secondWord) {
short result = 0;
for (int i=0; i < 4; i++) {
result ^= multiply(firstWord[i], secondWord[i]);
}
return result;
}
/**
* 有限域GF(2)上的乘法操作,通过分解操作数将之转化成有限域GF(2)上的倍乘操作
* multiplication in finite field GF(2^8)
* @param a an operand of this kind of multiplication
* @param b another operand of this kind of multiplication
* @return multiplication result
*/
private short multiply(short a, short b) {
short temp = 0;
while (b != 0) {
if ((b & 0x01) == 1) {
temp ^= a;
}
a <<= 1;
if ((a & 0x100) > 0) {
/*
judge if a is greater than 0x80, if then subtract a
irreducible polynomial which can be substituted by 0x1b
cause addition and subtraction are equivalent in this case
it's okay to xor 0x1b
*/
a ^= 0x1b;
}
b >>= 1;
}
return (short) (temp & 0xff);
}
6. 对外加密接口
- 将字符串形式的明文和密钥分别转换为 Nb 个字长的状态和 Nk 个字长的主密钥数组
- 通过主密钥数组生成轮密钥数组
- 将二维轮密钥数组转换成三维数组方便以 Nk 个字长为单位获取轮密钥
- 调用 coreEncrypt 方法,指定S盒运算表,列混合中用到的 CX 运算表和行变换每个字节的移位规则表
- 将最后获取到密文状态用 Base64 编码
public String encrypt(String plaintext, String key) {
// transfer plaintext and key from one-dimension matrix
// to (data.length / 4) x 4 matrix
short[][] initialPTState = transfer(transferToShorts(plaintext));
short[][] initialKeyState = transfer(transferToShorts(key));
// obtain raw round keys
short[][] rawRoundKeys = generateRoundKeys(initialKeyState);
// make it easier to obtain a whole block of round key in a round transformation
short[][][] roundKeys = transfer(rawRoundKeys);
short[][] finalState = coreEncrypt(initialPTState, roundKeys, AESConstants.SUBSTITUTE_BOX,
AESConstants.CX, AESConstants.SHIFTING_TABLE);
return Base64Util.encode(transfer2Bytes(finalState));
}
7. 核心加密逻辑
/**
* AES核心操作,通过将可逆操作抽取成可逆矩阵作为参数,使该方法能在加/解密操作中复用
* @param initialPTState 明文或密文的状态数组
* @param roundKeys 加/解密要用到的轮密钥数组
* @param substituteTable 加/解密要用到的S盒
* @param mixColumnTable 列混合中用来取代既约多项式的数组
* @param shiftingTable 行变换中用来决定字间左移的位数的数组
* @return 加/解密结果
*/
private short[][] coreEncrypt(short[][] initialPTState,
short[][][] roundKeys, short[][] substituteTable,
short[][] mixColumnTable, short[][] shiftingTable) {
// 初始轮密钥加,异或操作
short[][] state = xor(roundKeys[0], initialPTState);
// 处理前九轮变换
for (int i = 0; i < 9; i++) {
// 将状态数组的字节替换为S盒中相应位置的字节
state = substituteState(state, substituteTable);
// 行移位变换
state = shiftRows(state, shiftingTable);
// 列混合变换
state = mixColumns(state, mixColumnTable);
// 轮密钥加变换
state = xor(roundKeys[i + 1], state);
}
// 处理最后一轮
state = substituteState(state, substituteTable);
state = shiftRows(state, shiftingTable);
state = xor(roundKeys[roundKeys.length - 1], state);
return state;
}
四. 解密过程
说到加密先纵观整个 AES 的加解密流程,由于 Rijndael 算法不是对合运算,所以其解密算法与加密算法不同,根据解密算法应当是加密算法的逆,最直接的做法就是把加密算法倒序执行,便得到解密算法,但是这样不便于工程实现。
由于 Rijndael 算法的巧妙设计,使得我们只需稍微改变密钥扩展策略,同时把加密算法的基本运变换成逆变换,便得到解密算法,其算法结构其实与加密算法的结构相同。
1. AES基本逆变换
1.1. AddRoundKey
轮密钥加变换的逆就是其本身,即
1.2. ShiftRows
行移位变换的逆是状态的后三行分别移位Nb - C1, Nb - C2, Nb - C3个字节。
1.3. MixColumns
因为列混合变换是把状态的每一列都乘以一个固定的多项式 c(x) :
所以列混合变换的逆就是状态的每列都乘以 c(x) 的逆多项式 d(x):
1.4. SubBytes
S 盒变换的逆要先进行逆仿射变换,再把每个字节用其在 GF(28) 中的逆来代替。
1.5. KeyExpansion
解密的密钥扩展与加密的密钥扩展不同,其定义如下:
- 使用加密算法的密钥扩展
- 把 InvMixColumn 应用到除第一和最后一轮外的所有轮密钥上
另外得到的逆轮密钥数组在轮变换中需要倒序使用,即 Round1 使用 roundKey(Nr+1)
2. 对外的解密接口
- 使用 Base64 编码将密文解码并得到初始状态,获取密钥数组
- 调用私有的核心解密函数得到解密后的明文状态
- 将明文状态还原为字符串(不考虑中文编码)
public String decrypt(String encryptedText, String key) {
short[][] initialTextState = transfer(Base64Util.decodeToShorts(encryptedText));
short[][] initialKeyState = transfer(transferToShorts(key));
short[][] decryptState = coreDecrypt(initialTextState, initialKeyState);
return getOrigin(decryptState);
}
3. 核心解密逻辑
获取加密轮密钥逆变换数组,复用核心加密函数即可,主要差别在于逆变换,大体步骤如下
- 使用加密算法的密钥扩展得到轮密钥数组,并对之进行维数处理
- 对中间 Nr-1 个密钥进行逆列混合变换
- 为了便于操作将上述步骤得到的解密轮密钥数组逆转,这样便可通过改变参数复用加密算法的结构
/**
* 解密逻辑:通过将可逆操作抽取成可逆矩阵, 复用加密核心函数
* @param encryptedTextState initial encrypted text state
* @param keyState initial key state
* @return decrypted state
*/
private short[][] coreDecrypt(short[][] encryptedTextState, short[][] keyState) {
// obtain raw round keys
short[][] rawRoundKeys = generateRoundKeys(keyState);
// make it easier to obtain a whole block of round key in a round transformation
short[][][] roundKeys = transfer(rawRoundKeys);
// 对中间9个密钥进行逆列混合变换
for (int i = 1; i < roundKeys.length - 1; i++) {
roundKeys[i] = mixColumns(roundKeys[i], AESConstants.INVERSE_CX);
}
short[][][] inverseRoundKeys = inverseRoundKeys(roundKeys);
return coreEncrypt(encryptedTextState, inverseRoundKeys, AESConstants.
INVERSE_SUBSTITUTE_BOX, AESConstants.INVERSE_CX, AESConstants.INVERSE_SHIFTING_TABLE);
}
/**
* [解密] 将解密扩展密钥数组逆转,方便复用核心加密操作,
* @param roundKeys 解密扩展密钥数组
* @return 逆转了的解密扩展密钥数组
*/
private short[][][] inverseRoundKeys(short[][][] roundKeys) {
short[][][] result = new short[roundKeys.length][4][4];
int length = roundKeys.length;
for (int i = 0; i < roundKeys.length; i++) {
result[i] = roundKeys[length - 1 - i];
}
return result;
}
五. 测试
@Test
public void testAES() throws UnsupportedEncodingException {
String plaintext = "passwordTextCase", key = "simpleKeyCase123";
CipherService aesService = new AESCipherService();
String encryptedText = aesService.encrypt(plaintext, key);
ArrayUtil.printInfo("encrypted text", encryptedText, false);
aesService.decrypt(encryptedText, key);
}
1. 加密结果
##################### encryption #####################
plaintext text passwordTextCase
key text simpleKeyCase123
initial plaintext state 70617373776f72645465787443617365
initial key state 73696d706c654b657943617365313233
RoundKeys
[RoundKey 1] 73696d706c654b657943617365313233
[RoundKey 2] b54aae3dd92fe558a06c842bc55db618
[RoundKey 3] fb04039b222be6c3824762e8471ad4f0
[RoundKey 4] 5d4c8f3b7f6769f8fd200b10ba3adfe0
[RoundKey 5] d5d26ecfaab5073757950c27edafd3c7
[RoundKey 6] bcb4a89a1601afad4194a38aac3b704d
[RoundKey 7] 7ee54b0b68e4e4a62970472c854b3761
[RoundKey 8] 8d7fa49ce59b403acceb071649a03077
[RoundKey 9] ed7b51a708e0119dc40b168b8dab26fc
[RoundKey 10] 948ce1fa9c6cf0675867e6ecd5ccc010
[RoundKey 11] e9362bf9755adb9e2d3d3d72f8f1fd62
N = 1
SubBytes 7b30727baf67127cd8f7d4c5f75383b1
ShiftRows 7b67d4b1aff7837bd853727cf73012c5
MixColumns 3a636747bfbfc8685094ebaa7264b7b1
RoundKey b54aae3dd92fe558a06c842bc55db618
AddRoundKeys 8f29c97a66902d30f0f86f81b73901a9
N = 2
SubBytes 73a5ddda3360d8048c41a80ca9127cd3
ShiftRows 7360a8d333417cda8c12dd04a9a5d80c
MixColumns 3d8336e003efffc7ecd033486987b385
RoundKey fb04039b222be6c3824762e8471ad4f0
AddRoundKeys c687357b21c419046e9751a02e9d6775
N = 3
SubBytes b4179621fd1cd4f29f88d1e0315e859d
ShiftRows b41cd19dfd8885219f5e96f23117d4e0
MixColumns 1b79ad2bc6430753a370fb8d6f98ae4b
RoundKey 5d4c8f3b7f6769f8fd200b10ba3adfe0
AddRoundKeys 46352210b9246eab5e50f09dd5a271ab
N = 4
SubBytes 5a9693ca56369f6258538c5e033aa362
ShiftRows 5a368c625653a3ca583a936203969f5e
MixColumns 00dbc99030c41d850fe0f98566d052b0
RoundKey d5d26ecfaab5073757950c27edafd3c7
AddRoundKeys d509a75f9a711ab25875f5a28b7f8177
N = 5
SubBytes 03015ccfb8a3a2376a9de63a3dd20cf5
ShiftRows 03a3e6f5b89d0ccf6ad25c373d01a23a
MixColumns eb9a73b1144277c7d206595ee1f82d90
RoundKey bcb4a89a1601afad4194a38aac3b704d
AddRoundKeys 572edb2b0243d86a9392fad44dc35ddd
N = 6
SubBytes 5b31b9f1771a6102dc4f2d48e32e4cc1
ShiftRows 5b1a2dc1774f4cf1dc2eb902e3316148
MixColumns 74d9434382cca8636a529deca76ac8fe
RoundKey 7ee54b0b68e4e4a62970472c854b3761
AddRoundKeys 0a3c0848ea284cc54322dac02221ff9f
N = 7
SubBytes 67eb3052873429a61a9357ba93fd16db
ShiftRows 673457db879316521afd30a693eb29ba
MixColumns 1e2d8b67ffd2ceb3be0d76b4889fff03
RoundKey 8d7fa49ce59b403acceb071649a03077
AddRoundKeys 93522ffb1a498e8972e671a2c13fcf74
N = 8
SubBytes dc00150fa23b19a7408ea33a78758a92
ShiftRows dc3ba392a28e8a0f407515a77800193a
MixColumns dfc617d8532f32e7ad32edf5d36904e5
RoundKey ed7b51a708e0119dc40b168b8dab26fc
AddRoundKeys 32bd467f5bcf237a6939fb7e5ec22219
N = 9
SubBytes 237a5ad2398a26daf9120ff3582593d4
ShiftRows 238a0fd4391293d2f9255ada587a26f3
MixColumns 18e9d05305617b7506871dc0eb356049
RoundKey 948ce1fa9c6cf0675867e6ecd5ccc010
AddRoundKeys 8c6531a9990d8b125ee0fb2c3ef9a059
N = 10
SubBytes 644dc7d3eed73dc958e10f71b299e0cb
ShiftRows 64d70fcbeee1e0d35899c7c9b24d3d71
RoundKey e9362bf9755adb9e2d3d3d72f8f1fd62
AddRoundKeys 8de124329bbb3b4d75a4fabb4abcc013
encrypted text jeEkMpu7O011pPq7SrzAEw==
2. 解密结果
##################### decryption #####################
encrypted text jeEkMpu7O011pPq7SrzAEw==
key text simpleKeyCase123
initial encrypted state 8de124329bbb3b4d75a4fabb4abcc013
initial key state 73696d706c654b657943617365313233
RoundKeys
[RoundKey 1] 73696d706c654b657943617365313233
[RoundKey 2] b54aae3dd92fe558a06c842bc55db618
[RoundKey 3] fb04039b222be6c3824762e8471ad4f0
[RoundKey 4] 5d4c8f3b7f6769f8fd200b10ba3adfe0
[RoundKey 5] d5d26ecfaab5073757950c27edafd3c7
[RoundKey 6] bcb4a89a1601afad4194a38aac3b704d
[RoundKey 7] 7ee54b0b68e4e4a62970472c854b3761
[RoundKey 8] 8d7fa49ce59b403acceb071649a03077
[RoundKey 9] ed7b51a708e0119dc40b168b8dab26fc
[RoundKey 10] 948ce1fa9c6cf0675867e6ecd5ccc010
[RoundKey 11] e9362bf9755adb9e2d3d3d72f8f1fd62
inverse roundKeys
[RoundKey 1] e9362bf9755adb9e2d3d3d72f8f1fd62
[RoundKey 2] 708e03febe111cd46ee2ba036852f407
[RoundKey 3] 513f2d23ce9f1f2ad0f3a6d706b04e04
[RoundKey 4] 16b3b0df9fa032091e6cb9fdd643e8d3
[RoundKey 5] de6e462d891382d681cc8bf4c82f512e
[RoundKey 6] 0dc56d9f577dc4fb08df092249e3dada
[RoundKey 7] e0240c6e5ab8a9645fa2cdd9413cd3f8
[RoundKey 8] e0ec63caba9ca50a051a64bd1e9e1e21
[RoundKey 9] a13297635a70c6c0bf86c1b71b847a9c
[RoundKey 10] 1d7fded0fb4251a3e5f60777a402bb2b
[RoundKey 11] 73696d706c654b657943617365313233
N = 1
SubBytes 8c0dfb5999e0a0a95ef931123e658b2c
ShiftRows 8c6531a9990d8b125ee0fb2c3ef9a059
MixColumns 53040c2a87038f0697c7e0d93028d2f4
RoundKey 708e03febe111cd46ee2ba036852f407
AddRoundKeys 238a0fd4391293d2f9255ada587a26f3
N = 2
SubBytes 32cffb195b39227f69c2467a5ebd237e
ShiftRows 32bd467f5bcf237a6939fb7e5ec22219
MixColumns 8d048eb16c1195259086b3707eb0573e
RoundKey 513f2d23ce9f1f2ad0f3a6d706b04e04
AddRoundKeys dc3ba392a28e8a0f407515a77800193a
N = 3
SubBytes 934971741ae6cffb723f2f89c1528ea2
ShiftRows 93522ffb1a498e8972e671a2c13fcf74
MixColumns 7187e7041833245b0491895b45a8c169
RoundKey 16b3b0df9fa032091e6cb9fdd643e8d3
AddRoundKeys 673457db879316521afd30a693eb29ba
N = 4
SubBytes 0a28da9fea22ff48432108c5223c4cc0
ShiftRows 0a3c0848ea284cc54322dac02221ff9f
MixColumns 85746becfe5cce275de232f62b1e3066
RoundKey de6e462d891382d681cc8bf4c82f512e
AddRoundKeys 5b1a2dc1774f4cf1dc2eb902e3316148
N = 5
SubBytes 5743fadd02925d2b93c3db6a4d2ed8d4
ShiftRows 572edb2b0243d86a9392fad44dc35ddd
MixColumns 0e668b6aefe0c834620d551574e278e0
RoundKey 0dc56d9f577dc4fb08df092249e3dada
AddRoundKeys 03a3e6f5b89d0ccf6ad25c373d01a23a
N = 6
SubBytes d571f5779a75815f587fa7b28b091aa2
ShiftRows d509a75f9a711ab25875f5a28b7f8177
MixColumns ba12800c0ceb0aae07985ebb42aa4ca6
RoundKey e0240c6e5ab8a9645fa2cdd9413cd3f8
AddRoundKeys 5a368c625653a3ca583a936203969f5e
N = 7
SubBytes 4624f0abb95071105ea222abd5356e9d
ShiftRows 46352210b9246eab5e50f09dd5a271ab
MixColumns 54f0b2574714202b9a44f24f2f89cac1
RoundKey e0ec63caba9ca50a051a64bd1e9e1e21
AddRoundKeys b41cd19dfd8885219f5e96f23117d4e0
N = 8
SubBytes c6c451752197677b6e9d35042e8719a0
ShiftRows c687357b21c419046e9751a02e9d6775
MixColumns d2523fb06931ba1a33941cb3b221a290
RoundKey a13297635a70c6c0bf86c1b71b847a9c
AddRoundKeys 7360a8d333417cda8c12dd04a9a5d80c
N = 9
SubBytes 8f906fa966f8017af039c930b7292d81
ShiftRows 8f29c97a66902d30f0f86f81b73901a9
MixColumns 66180a6154b5d2d83da5750b5332a9ee
RoundKey 1d7fded0fb4251a3e5f60777a402bb2b
AddRoundKeys 7b67d4b1aff7837bd853727cf73012c5
N = 10
SubBytes 030a19561b2641032d501e0126083907
ShiftRows 03081e031b0a39012d26190726504156
RoundKey 73696d706c654b657943617365313233
AddRoundKeys 70617373776f72645465787443617365
plaintext passwordTextCase
六. 总结
本文主要讲述了 AES 的由来、数学原理、加解密过程,并提供了示例代码片段,由于这篇文章其实我在 2018 年 10 月时写的(可见我的 博客原文),其中很多数学相关的原理细节至今也忘记德差不多了,由于换了系统,原博客的 markdown 文件都已经丢失,应该不会再维护,以后有机会应该都在这里写,所以就挖过来在这里记录一下,希望对正在学习密码学的朋友有帮助。
另外,文中的代码都已经上传到 Github,有兴趣的朋友可以去看看,如果喜欢的话,希望能点个 star 或 fork 支持一下。
接下来我将给各位同学划分一张学习计划表!
学习计划
那么问题又来了,作为萌新小白,我应该先学什么,再学什么?
既然你都问的这么直白了,我就告诉你,零基础应该从什么开始学起:
阶段一:初级网络安全工程师
接下来我将给大家安排一个为期1个月的网络安全初级计划,当你学完后,你基本可以从事一份网络安全相关的工作,比如渗透测试、Web渗透、安全服务、安全分析等岗位;其中,如果你等保模块学的好,还可以从事等保工程师。
综合薪资区间6k~15k
1、网络安全理论知识(2天)
①了解行业相关背景,前景,确定发展方向。
②学习网络安全相关法律法规。
③网络安全运营的概念。
④等保简介、等保规定、流程和规范。(非常重要)
2、渗透测试基础(1周)
①渗透测试的流程、分类、标准
②信息收集技术:主动/被动信息搜集、Nmap工具、Google Hacking
③漏洞扫描、漏洞利用、原理,利用方法、工具(MSF)、绕过IDS和反病毒侦察
④主机攻防演练:MS17-010、MS08-067、MS10-046、MS12-20等
3、操作系统基础(1周)
①Windows系统常见功能和命令
②Kali Linux系统常见功能和命令
③操作系统安全(系统入侵排查/系统加固基础)
4、计算机网络基础(1周)
①计算机网络基础、协议和架构
②网络通信原理、OSI模型、数据转发流程
③常见协议解析(HTTP、TCP/IP、ARP等)
④网络攻击技术与网络安全防御技术
⑤Web漏洞原理与防御:主动/被动攻击、DDOS攻击、CVE漏洞复现
5、数据库基础操作(2天)
①数据库基础
②SQL语言基础
③数据库安全加固
6、Web渗透(1周)
①HTML、CSS和JavaScript简介
②OWASP Top10
③Web漏洞扫描工具
④Web渗透工具:Nmap、BurpSuite、SQLMap、其他(菜刀、漏扫等)
那么,到此为止,已经耗时1个月左右。你已经成功成为了一名“脚本小子”。那么你还想接着往下探索吗?
阶段二:中级or高级网络安全工程师(看自己能力)
综合薪资区间15k~30k
7、脚本编程学习(4周)
在网络安全领域。是否具备编程能力是“脚本小子”和真正网络安全工程师的本质区别。在实际的渗透测试过程中,面对复杂多变的网络环境,当常用工具不能满足实际需求的时候,往往需要对现有工具进行扩展,或者编写符合我们要求的工具、自动化脚本,这个时候就需要具备一定的编程能力。在分秒必争的CTF竞赛中,想要高效地使用自制的脚本工具来实现各种目的,更是需要拥有编程能力。
零基础入门的同学,我建议选择脚本语言Python/PHP/Go/Java中的一种,对常用库进行编程学习
搭建开发环境和选择IDE,PHP环境推荐Wamp和XAMPP,IDE强烈推荐Sublime;
Python编程学习,学习内容包含:语法、正则、文件、 网络、多线程等常用库,推荐《Python核心编程》,没必要看完
用Python编写漏洞的exp,然后写一个简单的网络爬虫
PHP基本语法学习并书写一个简单的博客系统
熟悉MVC架构,并试着学习一个PHP框架或者Python框架 (可选)
了解Bootstrap的布局或者CSS。
阶段三:顶级网络安全工程师
如果你对网络安全入门感兴趣,那么你需要的话可以点击这里👉网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!
学习资料分享
当然,只给予计划不给予学习资料的行为无异于耍流氓,这里给大家整理了一份【282G】的网络安全工程师从入门到精通的学习资料包,可点击下方二维码链接领取哦。
探索吗?**
阶段二:中级or高级网络安全工程师(看自己能力)
综合薪资区间15k~30k
7、脚本编程学习(4周)
在网络安全领域。是否具备编程能力是“脚本小子”和真正网络安全工程师的本质区别。在实际的渗透测试过程中,面对复杂多变的网络环境,当常用工具不能满足实际需求的时候,往往需要对现有工具进行扩展,或者编写符合我们要求的工具、自动化脚本,这个时候就需要具备一定的编程能力。在分秒必争的CTF竞赛中,想要高效地使用自制的脚本工具来实现各种目的,更是需要拥有编程能力。
零基础入门的同学,我建议选择脚本语言Python/PHP/Go/Java中的一种,对常用库进行编程学习
搭建开发环境和选择IDE,PHP环境推荐Wamp和XAMPP,IDE强烈推荐Sublime;
Python编程学习,学习内容包含:语法、正则、文件、 网络、多线程等常用库,推荐《Python核心编程》,没必要看完
用Python编写漏洞的exp,然后写一个简单的网络爬虫
PHP基本语法学习并书写一个简单的博客系统
熟悉MVC架构,并试着学习一个PHP框架或者Python框架 (可选)
了解Bootstrap的布局或者CSS。
阶段三:顶级网络安全工程师
如果你对网络安全入门感兴趣,那么你需要的话可以点击这里👉网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!
学习资料分享
当然,只给予计划不给予学习资料的行为无异于耍流氓,这里给大家整理了一份【282G】的网络安全工程师从入门到精通的学习资料包,可点击下方二维码链接领取哦。
