【状态估计】将Transformer和LSTM与EM算法结合到卡尔曼滤波器中,用于状态估计(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码及文章讲解


💥1 概述

文章来源:

卡尔曼滤波器需要模型的真实参数,并递归地求解最优状态估计期望最大化(EM)算法适用于估计卡尔曼滤波之前不可用的模型参数,即EM-KF算法。为了提高EM-KF算法的准确性,作者提出了一种状态估计方法,该方法在序列到序列的编码器-解码器(seq2seq)框架下,将长-短期存储器网络(LSTM)、变压器和EM-KF方法相结合。对线性移动机器人模型的仿真表明,新方法更准确。

  • 卡尔曼滤波需要模型的真实参数,并递归求解最优状态估计。期望最大化(EM)算法适用于估计卡尔曼滤波前不可用的模型参数,即EM-KF算法。
  • 为了提高EM-KF算法的精度,该文在序列编码器-解码器(seq2seq)的框架中,结合长短期记忆网络(LSTM)、变压器和EM-KF算法,提出了一种状态估计方法。

我们在seq2seq中提出了用于状态估计的编码器-解码器框架,该状态估计等效于编码和解码观察。

  1. 之前将LSTM整合到KF的工作是采用LSTM编码器和KF 译码器。我们建议LSTM-KF采用LSTM编码器和EM-KF解码器。
  2. 在EM-KF解码器之前,用变压器编码器代替LSTM编码器,我们称之为 变压器-KF.
  3. 集成变压器和LSTM,我们称之为TL-KF。

集成变压器和LSTM在滤波前对观察进行编码,使EM算法更容易估计参数。

  1. 将Transformer和LSTM作为观测的编码器-解码器框架相结合,可以更有效地描述状态,衰减噪声干扰,削弱状态马尔可夫性质的假设和观测的条件独立性。这可以增强状态估计的精度和鲁棒性。
  2. 基于多头自注意和残余连接的变压器可以捕获长期依赖性,而LSTM编码器可以对时间序列进行建模。TL-KF是变压器、LSTM和EM-KF的组合,可用于参数未知的系统的状态估计。
  3. 卡尔曼平滑可以改善卡尔曼滤波,但在TL-KF中,滤波足够精确。因此,经过离线训练进行参数估计后,可以采用KF进行在线估计。

 

📚2 运行结果

 

  

部分代码:

kft = KalmanFilter(
    A,C,Q,R,B,D,m0,P0,
    random_state=random_state
)# model should be
state, observation = kft.sample(
    n_timesteps=step,
    initial_state=m0
)# provide data
#filtered_state_estimatet, f_covt = kft.filter(observation)
#smoothed_state_estimatet, s_covt = kft.smooth(observation)

'''
Step 2: Initialize our model
'''

# specify parameters
transition_matrix = A
transition_offset = B
observation_matrix = C
observation_offset = D
transition_covariance = 0.02*np.eye(3)
observation_covariance = np.eye(1)
initial_state_mean =[0,0,1]
initial_state_covariance = 5*np.eye(3)

# sample from model

kf = KalmanFilter(
    transition_matrix, observation_matrix, transition_covariance,
    observation_covariance, transition_offset, observation_offset,initial_state_mean,initial_state_covariance,
    random_state=random_state,
    em_vars=[
      #'transition_matrices', 'observation_matrices',
      'transition_covariance','observation_covariance',
      #'transition_offsets', 'observation_offsets',
      'initial_state_mean', 'initial_state_covariance'
      ]
class TransformerBlock(nn.Module):
    """
    Bidirectional Encoder = Transformer (self-attention)
    Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
    """

    def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
        """
        :param hidden: hidden size of transformer
        :param attn_heads: head sizes of multi-head attention
        :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
        :param dropout: dropout rate
        """

        super().__init__()
        self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)
        self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
        self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.dropout = nn.Dropout(p=dropout)
        self.hidden = hidden

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

@article{shi2021kalman,
    author={Zhuangwei Shi},
    title={Incorporating Transformer and LSTM to Kalman Filter with EM algorithm for state estimation},
    journal={arXiv preprint arXiv:2105.00250},
    year={2021},
}

🌈4 Python代码及文章讲解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
TransformerLSTM模型结合起来可以采用两种方式:Stacked Hybrid Model和Parallel Hybrid Model。 **1. Stacked Hybrid Model** 在Stacked Hybrid Model,我们将LSTMTransformer层堆叠在一起,如下所示: ``` input -> LSTM -> Transformer -> output ``` 在这种模型,我们可以使用LSTM层来处理序列数据,而Transformer层则用于对时间步长之间的依赖关系进行编码。这种模型非常适用于处理长序列数据,例如自然语言处理的文本数据。 以下是一个示例代码: ```python from tensorflow.keras.layers import Input, LSTM, Dense, Dropout from tensorflow.keras.layers import Embedding, Flatten, Concatenate from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam # define input input_layer = Input(shape=(None,)) # define embedding layer embedding_layer = Embedding(input_dim=vocab_size, output_dim=embedding_dim)(input_layer) # define LSTM layer lstm_layer = LSTM(units=lstm_units, return_sequences=True)(embedding_layer) # define Transformer layer transformer_layer = Transformer(num_layers=num_layers, d_model=d_model, num_heads=num_heads, dff=dff, maximum_position_encoding=maximum_position_encoding)(lstm_layer) # define output layer output_layer = Dense(units=output_size, activation='softmax')(transformer_layer) # define model model = Model(inputs=input_layer, outputs=output_layer) # compile model optimizer = Adam(lr=learning_rate) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) ``` **2. Parallel Hybrid Model** 在Parallel Hybrid Model,我们将LSTMTransformer层并行连接在一起,如下所示: ``` input -> LSTM -> output input -> Transformer -> output | Concatenate | output ``` 在这种模型,我们使用LSTMTransformer层分别处理序列数据,并在最后一个层上连接它们的输出。这种模型非常适用于处理需要同时考虑时间和特征的数据,例如音频和视频数据。 以下是一个示例代码: ```python from tensorflow.keras.layers import Input, LSTM, Dense, Dropout from tensorflow.keras.layers import Embedding, Flatten, Concatenate from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam # define input input_layer = Input(shape=(None,)) # define embedding layer embedding_layer = Embedding(input_dim=vocab_size, output_dim=embedding_dim)(input_layer) # define LSTM layer lstm_layer = LSTM(units=lstm_units, return_sequences=True)(embedding_layer) # define Transformer layer transformer_layer = Transformer(num_layers=num_layers, d_model=d_model, num_heads=num_heads, dff=dff, maximum_position_encoding=maximum_position_encoding)(embedding_layer) # define concatenation layer concat_layer = Concatenate()([lstm_layer, transformer_layer]) # define flatten layer flatten_layer = Flatten()(concat_layer) # define output layer output_layer = Dense(units=output_size, activation='softmax')(flatten_layer) # define model model = Model(inputs=input_layer, outputs=output_layer) # compile model optimizer = Adam(lr=learning_rate) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) ``` 这两种方式都可以将LSTMTransformer模型结合起来,具体使用哪种方式需要根据具体的任务和数据集来进行选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值