💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
电力变压器故障诊断一直是电力行业的重要课题之一。您提到的组合DGA(气体分析)方法结合了k均值聚类和支持向量机(SVM),是一种有效的故障诊断技术。让我简要解释一下这种方法的工作原理:
1. **气体分析(DGA)**:电力变压器在运行过程中,由于内部故障或异常情况,可能会产生气体。这些气体的类型和含量可以提供有关变压器健康状况的重要信息。气体分析是一种常用的非破坏性检测方法,用于监测变压器内部的状态。
2. **k均值聚类**:k均值聚类是一种常见的无监督学习算法,用于将数据集划分成k个不同的类别(簇)。在这种方法中,首先需要确定簇的数量k,然后通过迭代优化的方式将数据点分配到各个簇中,使得同一簇内的数据点彼此相似,而不同簇之间的数据点差异较大。
3. **支持向量机(SVM)**:支持向量机是一种常用的监督学习算法,用于分类和回归任务。在故障诊断中,SVM可以用来构建一个分类模型,将气体分析结果与已知的故障类型进行关联,从而实现对电力变压器故障的识别。
组合DGA方法的基本思路是,首先利用气体分析技术获取变压器内部气体的类型和含量数据,然后利用k均值聚类将这些数据点划分成不同的类别,最后使用SVM构建一个分类模型,将这些类别与特定的故障类型相关联,从而实现对电力变压器故障的准确诊断。
这种组合技术的优势在于能够充分利用气体分析提供的丰富信息,并结合机器学习算法实现自动化的故障诊断,提高了诊断的准确性和效率。
📚2 运行结果
部分代码:
if (n1(i,1) <= n1lim) && (n2(i,1) <= n2lim) && (n3(i,1) <= n3lim) && (n4(i,1) <= n4lim) && (n5(i,1) <= n5lim)
n = 'Normal';
end
if ind == 1
n = 'Cluster_1';
end
if ind == 2
n = 'Cluster_2';
end
if ind == 3
n = 'Cluster_3';
end
if ind == 4
n = 'Cluster_4';
end
if ind == 5
n = 'Cluster_5';
end
if ind == 6
n = 'Cluster_6';
end
if ind == 7
n = 'Cluster_7';
end
if ind == 8
n = 'Cluster_8';
end
if ind == 9
n = 'Cluster_9';
end
if ind == 10
n = 'Cluster_10';
end
if ind == 11
n = 'Cluster_11';
end
if ind == 12
n = 'Cluster_12';
end
if ind == 13
n = 'Cluster_13';
end
if ind == 14
n = 'Cluster_14';
end
if ind == 15
n = 'Cluster_15';
end
if ind == 16
n = 'Cluster_16';
end
if ind == 17
n = 'Cluster_17';
end
if ind == 18
n = 'Cluster_18';
end
if ind == 19
n = 'Cluster_19';
end
if ind == 20
n = 'Cluster_20';
end
if ind == 21
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]A. NANFAK, A. HECHIFA, S. EKE, A. LAKEHAL, C. H. KOM and Sherif S. M. GHONEIM. “A combined technique for power transformer fault diagnosis based on k-means clustering and support vector machine.”.