【A_star三维路径规划】A_star算法无人机山地三维路径规划【含Matlab源码 266期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab路径规划仿真内容点击👇
Matlab路径规划(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、A_star算法简介

0 引言
随着现代技术的发展,飞行器种类不断变多,应用也日趋专一化、完善化,如专门用作植保的大疆PS-X625无人机,用作街景拍摄与监控巡察的宝鸡行翼航空科技的X8无人机,以及用作水下救援的白鲨MIX水下无人机等,决定飞行器性能主要是内部的飞控系统和外部的路径规划问题。就路径问题而言,在具体实施任务时仅靠操作员手中的遥控器控制无人飞行器执行相应的工作,可能会对操作员心理以及技术提出极高的要求,为了避免个人操作失误,进而造成飞行器损坏的危险,一种解决问题的方法就是对飞行器进行航迹规划。
飞行器的测量精度,航迹路径的合理规划,飞行器工作时的稳定性、安全性等这些变化对飞行器的综合控制系统要求越来越高。无人机航路规划是为了保证无人机完成特定的飞行任务,并且能够在完成任务的过程中躲避各种障碍、威胁区域而设计出最优航迹路线的问题。常见的航迹规划算法如图1所示。
在这里插入图片描述
图1 常见路径规划算法
文中主要对无人机巡航阶段的航迹规划进行研究,假设无人机在飞行中维持高度与速度不变,那么航迹规划成为一个二维平面的规划问题。在航迹规划算法中,A算法计算简单,容易实现。在改进A算法基础上,提出一种新的、易于理解的改进A算法的无人机航迹规划方法。传统A算法将规划区域栅格化,节点扩展只限于栅格线的交叉点,在栅格线的交叉点与交叉点之间往往存在一定角度的两个运动方向。将存在角度的两段路径无限放大、细化,然后分别用两段上的相应路径规划点作为切点,找到相对应的组成内切圆的圆心,然后作弧,并求出相对应的两切点之间的弧所对应的圆心角,根据下式计算出弧线的长度
在这里插入图片描述
式中:R———内切圆的半径;
α———切点之间弧线对应的圆心角。

1 A*算法概述
A算法是在Dijstar算法的基础上引入的启发式函数,通过定义的代价函数来评估代价大小,从而确定最优路径。A算法的代价函数
在这里插入图片描述
式中:f(x,y)———初始状态X0(x0,y0)到达目标状态X1(x1,y1)的代价估计;
g(x,y)———状态空间中从初始状态X0(x0,y0)到状态N(x1,y1)的实际代价;
h(x,y)———从状态N(x1,y1)到目标状态X1(x1,y1)最佳路径的估计代价。
要找到最短路径的实质是找到f(x,y)的最小值,其中在式(2)中寻找最短路径的关键在于求估计代价h (x,y)值。设系数λ表示状态N(x1,y1)到X1(x1,y1)最优距离,如果λ<h(x,y),搜索范围小,不能保证得到最优解;λ>h(x,y),搜索范围大,费时,但能找到最优解;λ=h(x,y),搜索到最短路径。其中h(x,y)一般用欧几里德距离(式(3))或者绝对值距离(式(4))计算。
在这里插入图片描述
A算法是以起始点为中心,周围8个栅格的中心为下一步预选,并不断地计算预选位置的f(x,y)值,其中f(x,y)值最小的作为当前位置,依次逐层比较,直到当前位置的临近点出现目标点为止,其最小单元如图2所示。
在这里插入图片描述
图2 最小单元
A
算法的流程如下:
1)创建开始节点START,目标节点TARGET、OPEN列表、CLOSE列表、CLOSE列表初始为空;
2)将START加入到OPEN列表;
3)检查OPEN列表中的节点,若列表为空,则无可行路径;若不为空,选择使f(x,y)值最小的节点k;
4)将节点k从OPEN中去除,并将其添加到CLOSE中,判断节点k是否目标节点TARGET,若是,则说明找到路径;若不是,则继续扩展节点k,生成k节点的子节点集,设q为k的子节点集,对所有节点q计算相应的f(x,y)值,并选择f(x,y)值最小的节点,将该节点放入CLOSE列表中;
5)跳到3),直到算法获得可行路径或无解退出。

⛄二、部分源代码

%% 该函数用于演示基于A_Star算法的三维路径规划算法
%% 清空环境
clc
clear

%% 数据初始化
%下载数据
starttime=cputime;
load HeightData z zx tabu dimao

%起点终点网格点
startx=8;starty=27;
endx=35;endy=17;

%OPEN LIST STRUCTURE
%IS ON LIST 1/0 |X val |Y val |Parent X val |Parent Y val |g(n) |h(n)|f(n)|
OPEN=[];%开始列表
%CLOSED LIST STRUCTURE
%X val | Y val |
CLOSED=[];%结束列表

%Put all obstacles on the Closed list
k=1;
for i=1:40
for j=1:40
if(tabu(j,i) == 0) %不可经过点
CLOSED(k,1)=i;
CLOSED(k,2)=j;
k=k+1;
end
end
end
CLOSED_COUNT=size(CLOSED,1);%提前将不可通行点加入到CLOSED表

%% set the starting node as the first node
xNode=startx;
yNode=starty;
OPEN_COUNT=1;
path_cost=0;
goal_distance=sqrt(25*(xNode-endx)^2 + 25*(yNode-endy)2+(zx(yNode,xNode)-zx(endy,endx))2)/(5*dimao(yNode,xNode));%所在位置距目标点欧几里得距离
OPEN(OPEN_COUNT,:)=[1,xNode,yNode,xNode,yNode,path_cost,goal_distance,goal_distance];%向new_row中插入开始列表
OPEN(OPEN_COUNT,1)=0;%表示第1个节点已经从开始列表出来
CLOSED_COUNT=CLOSED_COUNT+1;%表示第1个位置节点已经进入结束列表
CLOSED(CLOSED_COUNT,1)=xNode;
CLOSED(CLOSED_COUNT,2)=yNode;
NoPath=1;%路径记录号

%% START ALGORITHM
while((xNode ~= endx || yNode ~= endy) && NoPath == 1)%只适用刚出发时候
%返回exp_array=多行[s_x,s_y,gn, hn, fn]
%此时OPEN=多行[1,xNode,yNode,xNode,yNode,hn,gn,fn]
exp_array=expand_array(xNode,yNode,endx,endy,path_cost,zx,CLOSED,dimao,40,40); %计算当前点(xNode,yNode)所有可行的下一点,向前向后x+1、x-1、斜对角x+1,y+1、向左向右y+1、y-1
exp_count=size(exp_array,1);%求得exp_array行向量的维数,可到达的下一栅格

 for i=1:exp_count%可到达的栅格
        flag=0;
        for j=1:OPEN_COUNT %最初OPEN_COUNT只有1行
            if(exp_array(i,1) == OPEN(j,2) && exp_array(i,2) == OPEN(j,3) )%exp_array的节点是OPEN里的节点
                OPEN(j,8)=min(OPEN(j,8),exp_array(i,5));%f(n) 更新最小值
                if OPEN(j,8)== exp_array(i,5)%说明原来的OPEN(j,8)>exp_array(i,5),
                    %f(n)=g(n)+h(n)>g(n-1)+D(n-1,n)+h(n),即g(n)>g(n-1)+D(n-1,n)
                    OPEN(j,4)=xNode;%Parent X val 
                    OPEN(j,5)=yNode;%Parent Y val 当前位置
                    OPEN(j,6)=exp_array(i,3);%g(n) path_cost
                    OPEN(j,7)=exp_array(i,4);%h(n) goal_distances
                end;%End of minimum fn check
                flag=1;
            end;%End of node check
        end;%End of j for
        if flag == 0%说明此时的节点还未添加进open列表,需要将其加入到open表
            OPEN_COUNT = OPEN_COUNT+1;
            OPEN(OPEN_COUNT,:)=[1,exp_array(i,1),exp_array(i,2),xNode,yNode,exp_array(i,3),exp_array(i,4),exp_array(i,5)];
        end;%End of insert new element into the OPEN list
 end;%End of i for

 %Find out the node with the smallest fn 
 index_min_node = min_fn(OPEN,OPEN_COUNT,endx,endy);  %最小f(n)的行数
 if (index_min_node ~= -1)    
      %Set xNode and yNode to the node with minimum fn
      xNode=OPEN(index_min_node,2);
      yNode=OPEN(index_min_node,3);
      path_cost=OPEN(index_min_node,6);%Update the cost of reaching the parent node 更新位置点和路径消耗
      %Move the Node to list CLOSED
      CLOSED_COUNT=CLOSED_COUNT+1;
      CLOSED(CLOSED_COUNT,1)=xNode;
      CLOSED(CLOSED_COUNT,2)=yNode;
      OPEN(index_min_node,1)=0;
  else
      %No path exists to the Target!!
      NoPath=0;%Exits the loop!
  end;%End of index_min_node check

end;%End of While Loop

%% Once algorithm has run The optimal path is generated by starting of at the
%last node(if it is the target node) and then identifying its parent node
%until it reaches the start node.This is the optimal path
i=size(CLOSED,1);
Optimal_path=[];
xval=CLOSED(i,1); %终点
yval=CLOSED(i,2);
% xval=endx;
% yval=endy;
j=1;
Optimal_path(j,1)=xval;
Optimal_path(j,2)=yval;
j=j+1;

%Traverse OPEN and determine the parent nodes
%返回(xval,yval)在OPEN中的序号
jj=1;
while(OPEN(jj,2) ~= xval || OPEN(jj,3) ~= yval )
jj=jj+1;
end; %寻找对应的上一坐标点
parent_x=OPEN(jj,4);%node_index returns the index of the node
parent_y=OPEN(jj,5);

while( parent_x ~= startx || parent_y ~= starty)
Optimal_path(j,1) = parent_x;
Optimal_path(j,2) = parent_y;
%返回节点在open表中的序号
k=1;
while(OPEN(k,2) ~= parent_x || OPEN(k,3) ~= parent_y )
k=k+1;
end;
parent_x=OPEN(k,4);%node_index returns the index of the node
parent_y=OPEN(k,5);
j=j+1;
end;

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]马云红,张恒,齐乐融,贺建良.基于改进A*算法的三维无人机路径规划[J].电光与控制. 2019,26(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值