【火灾报警】颜色特征森林火情预警识别系统【含GUI Matlab源码 3796期】

本文介绍了使用Matlab进行森林火灾检测的方法,包括图像预处理、火焰和烟雾特征提取、动态特征分析,以及多层检测技术以提高识别速度。系统通过火焰颜色、面积和不规则度等特征进行区分,并展示了部分源代码和所用的Matlab版本2014a。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、火灾检测简介

1 引言
目前森林火灾是破坏森林的最主要的灾害之一, 影响很大。森林是各种珍禽异兽的家园, 森林遭受火灾后, 会破坏野生动物赖以生存的环境。严重的森林火灾不仅能引起水土流失, 还会引起山洪爆发、泥石流等自然灾害。因此, 对森林火灾尽早识别并预警, 就能最大限度的降低损失。本森林火灾检测方法是在利用图像处理技术对烟火普遍特性进行研究的基础上, 结合烟火区域火焰的颜色、面积、不规则度特征以及烟雾的颜色特征和动态特征而提出的。基本消除其他不利的影响, 有效提高森林火灾图像的识别的准确度。除此之外, 我们运用了多层检测的方式, 减少了系统处理分析的时间, 提高了识别的速度。
在这里插入图片描述
图1 火灾识别流程

2 森林火险检测系统流程
我们为了达到火险检测的目的, 我们采取从烟雾和火焰两个方面进行检测, 设计了多层拓展识别的流程, 静态特征和动态特征相结合的识别检测方式。方案的具体操作总体流程如图1。该火险检测系统的总体设计思想是:该首先获取相机实时拍摄的图像;然后对视频图像进行实时背景差动态判断有无异常情况, 如果连续的几帧图像发生了较大的变化, 即判断为有异常情况发生;下一步采取我们的检测算法分别对图像进行就火焰识别和烟雾识别, 若图像中有火焰 (烟雾) , 系统就会输出“1”, 否则就输出“0”;最后用我们多特征融合综合判断是否是火灾, 是的话则输出“1”发出火灾预警, 从而完成整个森林火险检测系统。

3 火焰检测
森林火险检测系统中火焰检测部分的流程如图2 (左) 所示:
在这里插入图片描述
图2 火焰检测 (左) 和烟雾检测 (右) 流程图

待检测的图像输入后, 开始需要进行图像的初步的处理。图像预处理过程一般包括有增强、滤波、细化几个方面。接下来主要简述的是火焰图像的增强处理和滤波。

图像增强主要指的是按照开发者的想法加强图像中某部分, 可以是某个具体的区域, 也可以是符合相关限制条件的部分区域, 并且淡化或消除某些不重要杂乱信息的处理方法。图像增强主要包括了直方图修改处理、图像平滑处理、图像尖锐化处理及彩色图像处理等常见的处理方式。该系统我们运用几种方法同步进行, 目的是达到火焰图像预期的增强效果。

在火焰图像经过预处理后, 下一步是进行火焰分割。在充足的自然光的条件下, 我们采取颜色特征提取的方式, 把疑似火焰区域从图中给分割出来。在一般情况下, 火焰虽然可能会有多种不同的颜色, 但主要集中在暗红色、红色、橙色、黄色、白色、蓝色这些颜色中。即使在不同的环境下火焰会呈现不同的颜色, 但它常常会经过由红过渡到黄的燃烧过程。此时图像的RGB值符合R≥G≥B的关系。与此同时, 我们采取转换到HSI空间, 进行多特征采取。在HSI空间中, 火焰的色度值H通常在0~60度之间, 此外, S满足100, I满足255。图像中满足以上四个条件的像素当作是火焰的候选区域。

火焰的颜色提取之后的图像可能会存在噪声, 我们采用中值滤波进行去噪。

在 (Y, Cr, Cb) 空间中, 火焰和其他相关物体有着明显的区别。在二维的 (Cr, Cb) 空间里, 火焰像素的分布接近正态分布, 而其他物体则不具有该特性。所以我们采取将火焰图像转换到 (Y, Cr, Cb) 空间, 对像素进行分析, 将接近正态分布特性的区域提取出来。

也就是说, 当检测图像在的二维的 (Cr, Cb) 空间满足正态分布的时候, 可以粗判定为火焰图像。

经过火焰颜色特征粗判定后, 下一步进行火焰的动态特征的判定, 最终裁决是否为火焰。对于人类而言, 形状是我们判断一个物体的重要特征。所以计算机对于图像中物体形状的分析也是非常有益的。根据图形图像的相关理论, 我们获取火焰图像的动态特征, 以此作为判断的依据进行进一步的处理。我们运用了与物体形状相关的两个特性来作为我们火焰图像的判断依据。

A.不规则性

考虑到森林火灾火焰形状的不规则性和对我们的系统可能产生干扰的像光源 (如手电筒, 探照灯灯等) 的形状特征具有较高的规律性的特点, 我们采取用不规则的程度作为判断是否为火焰的依据。不规则度表征了物体形状的不规则程度, 其表达式如下:
在这里插入图片描述
我们定义周长为物体的边界长度, 可以通过火焰图像候选区域边界上像素的个数来获得。面积通过统计所有可能烟雾区域像素点数获得。候选图像的形状越复杂, 其不规则度值越大。

获取火焰候选图像不规则度的具体步骤:

(1) 对颜色分割得到的火焰候选图像提取边缘, 算出边缘上像素个数得到L。

(2) 求出火焰图像中疑似火焰区域的面积, 即求出在上一步颜色分割中所有被置为黑色的像素总数S。

(3) 求不规则度, 并计算出连续n帧图像的平均值。

B.扩散性

一般在火灾发生后, 火灾面积会呈现不断扩大的趋势, 过火面积会连续扩大, 相应的相机探测到的火灾区域面积也会逐渐增大。也就是说在我们获得的图像上高亮的区域也会持续的增长。因此, 我们可以定义“k”表示后续疑似火焰区面积与先前疑似火焰区域的面积的比值来表征火灾的扩散特性。在我们设定相应的参考时间内, k值越大, 火灾的扩散特性越强。

在火焰检测部分, 首先将拍的的图像进行前期的预处理后, 进行基于颜色特征筛选出火焰区域的候选图像, 然后再根据这些图像的不规则性和扩散性做出是否为火焰区域的最终判定, 然后将判定结果输入给下一步。

⛄二、部分源代码

function varargout = MainForm(varargin)
% MAINFORM MATLAB code for MainForm.fig
% MAINFORM, by itself, creates a new MAINFORM or raises the existing
% singleton*.
%
% H = MAINFORM returns the handle to a new MAINFORM or the handle to
% the existing singleton*.
%
% MAINFORM(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in MAINFORM.M with the given input arguments.
%
% MAINFORM(‘Property’,‘Value’,…) creates a new MAINFORM or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before MainForm_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to MainForm_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help MainForm

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @MainForm_OpeningFcn, …
‘gui_OutputFcn’, @MainForm_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

function InitAxes(handles)
clc;
axes(handles.axes1); cla reset; axis on; box on;
set(gca, ‘XTickLabel’, ‘’, ‘YTickLabel’, ‘’);
axes(handles.axes2); cla reset; axis on; box on;
set(gca, ‘XTickLabel’, ‘’, ‘YTickLabel’, ‘’);
axes(handles.axes3); cla reset; axis on; box on;
set(gca, ‘XTickLabel’, ‘’, ‘YTickLabel’, ‘’);
axes(handles.axes4); cla reset; axis on; box on;
set(gca, ‘XTickLabel’, ‘’, ‘YTickLabel’, ‘’);

% — Executes just before MainForm is made visible.
function MainForm_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MainForm (see VARARGIN)

% Choose default command line output for MainForm
handles.output = hObject;
InitAxes(handles);
handles.I = 0;
handles.filename = 0;
handles.rect = 0;
handles.I2 = 0;
handles.M2 = 0;
% Update handles structure
guidata(hObject, handles);

% UIWAIT makes MainForm wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = MainForm_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 杨雨卓.基于图像处理的森林火险检测系统[J].电子世界. 2018,(16)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

### 使用MATLAB实现基于颜色特征森林火灾预警 #### 方法概述 为了利用颜色特征来检测森林中的潜在火灾,可以采用图像处理技术。具体来说,通过分析RGB色彩空间或其他更有效的色彩模型(如HSV),能够有效区分火焰特有的红色和黄色色调。这种方法依赖于特定的颜色阈值设定以及形态学操作去除噪声。 #### 实现步骤说明 创建一个简单的基于颜色特征森林火灾探测器涉及以下几个方面: - **读取并预处理输入图片** 需要加载待分析的照片或视频帧,并将其转换成适合进一步处理的形式。 - **定义颜色范围** 基于已知的火焰颜色特性,在选定的颜色空间内设置合理的上下限以捕捉可能存在的火苗区域[^1]。 - **应用掩膜提取疑似着火区** 利用之前定义好的条件生成二进制掩码图`fireMask`,该图中只有满足指定颜色标准的部分会被保留下来作为候选目标显示为白色像素点;其余则设为黑色背景。 - **执行形态学变换优化结果** 对初步获得的结果实施膨胀腐蚀等基本形态学术语的操作,有助于消除孤立的小斑点干扰项从而提高识别精度。 - **可视化最终输出** 将原始影像与处理后的二值化地图叠加展示给用户查看,以便直观理解哪些地方可能存在危险状况。 #### 示例代码片段 下面给出了一段简化版的MATLAB脚本用于演示上述流程的核心逻辑: ```matlab % 加载测试图像文件 img = imread('forest_scene.jpg'); % 转换成HSV颜色模式更适合描述物体属性 hsvImg = rgb2hsv(img); % 设定Hue(色调), Saturation(饱和度) 和 Value(亮度) 的界限值用来筛选火焰成分 lowerBound = [0, 50/100, 50/100]; % HSV最小边界 upperBound = [30/360, 1, 1]; % HSV最大边界 % 创建布尔型矩阵表示符合条件的位置 mask = all(hsvImg >= lowerBound & hsvImg <= upperBound, 3); % 形态学开闭运算减少误报率 se = strel('disk', 5); cleanedMask = imopen(mask, se); % 开运算先去噪再填充孔洞 finalMask = imclose(cleanedMask, se); % 关运算连接断开部分 % 显示原图对比处理效果 figure; subplot(1,2,1); imshow(img); title('Original Image'); subplot(1,2,2); imshow(finalMask); title('Detected Fire Regions'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值