题目描述:
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/yong-liang-ge-zhan-shi-xian-dui-lie-lcof
要求:
用两个栈实现一个队列。
队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )。
示例 1:
输入:
["CQueue","appendTail","deleteHead","deleteHead"]
[[],[3],[],[]]
输出:[null,null,3,-1]
示例 2:
输入:
["CQueue","deleteHead","appendTail","appendTail","deleteHead","deleteHead"]
[[],[],[5],[2],[],[]]
输出:[null,-1,null,null,5,2]
提示:
1 <= values <= 10000
最多会对 appendTail、deleteHead 进行 10000 次调用
理解栈和队列的性质:
- > 思路:
维护两个栈,第一个栈支持插入操作,第二个栈支持删除操作。
根据栈先进后出的特性,我们每次往第一个栈里插入元素后,第一个栈的底部元素是最后插入的元素,第一个栈的顶部元素是下一个待删除的元素。为了维护队列先进先出的特性,我们引入第二个栈,用第二个栈维护待删除的元素,在执行删除操作的时候我们首先看下第二个栈是否为空。如果为空,我们将第一个栈里的元素一个个弹出插入到第二个栈里,这样第二个栈里元素的顺序就是待删除的元素的顺序,要执行删除操作的时候我们直接弹出第二个栈的元素返回即可。
-
Krahets 解析图
-
如果栈 A 和 B 都为空,执行deletehead()函数返回 -1;
- 调用appendTail() 函数,将5压入栈
- 再调用appendTail() 函数,将2压入栈,此时队列中队首元素是5,队尾元素是2;
- 此时,队列中应当是: 队列的队首元素 5 ,队尾元素为2
- 执行deletehead()函数,就是删除队列的头部元素 5 ,此时栈A的内, 5为栈底 、2为栈顶元素 (不能直接拿出 5 来删除);而栈 B 为空,需要把栈A的元素执行倒叙为,将5变为栈顶元素 、2为栈底元素,这样可以直接弹出5元素,按照队列的进出规则,删除队首元素5。
- 再次执行deletehead()函数,栈 B 不为空,栈 B 弹出的元素,与删除队列队首元素相同,可以直接弹出栈 B 的元素,来执行删除队首的元素指令。
成员变量
维护两个栈 stack1 和 stack2,其中 stack1 支持插入操作,stack2 支持删除操作
构造方法
初始化 stack1 和 stack2 为空
插入元素
插入元素对应方法 appendTail
stack1 直接插入元素
删除元素
删除元素对应方法 deleteHead
如果 stack2 为空,则将 stack1 里的所有元素弹出插入到 stack2 里
如果 stack2 仍为空,则返回 -1,否则从 stack2 弹出一个元素并返回
(官方解析配图)
c++
class CQueue {
stack<int> stack1,stack2;
public:
CQueue() {
while (!stack1.empty()) {
stack1.pop();
}
while (!stack2.empty()) {
stack2.pop();
}
}
void appendTail(int value) {
stack1.push(value);
}
int deleteHead() {
// 如果第二个栈为空
if (stack2.empty()) {
while (!stack1.empty()) {
stack2.push(stack1.top());
stack1.pop();
}
}
if (stack2.empty()) {
return -1;
} else {
int deleteItem = stack2.top();
stack2.pop();
return deleteItem;
}
}
};
python
class CQueue(object):
def __init__(self):
self.A,self.B = [], []
def appendTail(self, value:int) -> None:
"""
:type value: int
:rtype: None
"""
self.A.append(value);
def deleteHead(self) -> int:
"""
:rtype: int
"""
if self.B:
return self.B.pop();
if not self.A:
return -1;
while self.A:
self.B.append(self.A.pop());
return self.B.pop();
# Your CQueue object will be instantiated and called as such:
# obj = CQueue()
# obj.appendTail(value)
# param_2 = obj.deleteHead()
复杂度分析
时间复杂度:对于插入和删除操作,时间复杂度均为 O(1)。插入不多说,对于删除操作,虽然看起来是 O(n) 的时间复杂度,但是仔细考虑下每个元素只会「至多被插入和弹出 stack2 一次」,因此均摊下来每个元素被删除的时间复杂度仍为 O(1)。
空间复杂度:O(n)。需要使用两个栈存储已有的元素。