关于可解释机器学习SHAP的讨论

本文探讨了机器学习模型解释性工具SHAP的价值,特别是如何通过SHAP值来理解特征的重要性。作者指出,测试集用于评估模型性能并计算预期值。在使用SHAP进行依赖图绘制时,遇到特征名无法识别的问题,寻求解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习由于本身的黑箱的属性使得难以解释模型本身

SHAP提供了一个统一的标准来规范以往十分模糊的“Feature Importance”的含义。
SHAP增强了对模型的解释性,但是我在使用的时候遇到了几个问题。

1. 为什么要用测试集?
SHAP文档
文档中提供了许多例子,比如:

#加载糖尿病数据集
import sklearn
from sklearn.model_selection import train_test_split
import numpy as np
import shap
import time

X,y = shap
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值