机器学习由于本身的黑箱的属性使得难以解释模型本身
SHAP提供了一个统一的标准来规范以往十分模糊的“Feature Importance”的含义。
SHAP增强了对模型的解释性,但是我在使用的时候遇到了几个问题。
1. 为什么要用测试集?
SHAP文档
文档中提供了许多例子,比如:
#加载糖尿病数据集
import sklearn
from sklearn.model_selection import train_test_split
import numpy as np
import shap
import time
X,y = shap