C++多项式拟合

1. 该多项式基于Eigen库进行求解
2. 根据原始数据进行多项式拟合

Eigen::VectorXd polyfit(Eigen::VectorXd xvals, Eigen::VectorXd yvals, int order)
{
    assert(xvals.size() == yvals.size());
    assert(order >= 1 && order <= xvals.size() - 1);

    Eigen::MatrixXd A(xvals.size(), order + 1);

    for (int i = 0; i < xvals.size(); i++)
    {
        A(i, 0) = 1.0;
    }

    for (int j = 0; j < xvals.size(); j++)
    {
        for (int i = 0; i < order; i++)
        {
            A(j, i + 1) = A(j, i) * xvals(j);
        }
    }

    auto Q = A.householderQr();
    auto result = Q.solve(yvals);
    return result;
}

3. 根据拟合出的函数方程系数,测试数据

double polyeval(Eigen::VectorXd coeffs, double x)
{
    double result = 0.0;
    for (int i = 0; i < coeffs.size(); i++)
    {
        result += coeffs[i] * pow(x, i);
    }
    return result;
}

4. 示例

#include <Eigen/Eigen>
#include <vector>

int data_size = 100;
int fitting_frequency = 5;//多项式拟合的次数
double x[data_size];
double y[data_size];

for(size_t i = 0; i < origin_data.size(); i++){
	x[i] = origin_data[i].x;
	y[i] = origin_data[i].y;
}

double *p_x = &x[0];
double *p_y = &y[0];
Eigen::Map<Eigen::VectorXd> px_vals(p_x, data_size);
Eigen::Map<Eigen::VectorXd> py_vals(p_y, data_size);

//多项式拟合,coeffs为拟合函数系数
Eigen::VectorXd coeffs = polyfit(px_vals, py_vals, fitting_frequency);

// 拟合函数,拟合出新的数据
std::vector<double> fitting_y;
for(size_t i = 0; i < origin_data.size(); i++){
	double f_y = polyeval(coeffs, origin_data[i].x);
	fitting_y.push_back(f_y);
}

//则fitting_y是用拟合函数拟合出的y,可以画图与origin原始y进行对比
#ifndef FUNCTION_H_ #define FUNCTION_H_ #include #include #include "polyfit.h" #include using namespace std; dxs::dxs() { ifstream fin("多项式拟合.txt"); fin>>n; x=new float[n]; y=new float[n]; for(int i=0;i>x[i]; } for(i=0;i>y[i]; } cout<>nn; m=nn+1; u=new float*[m]; for(i=0;i<m;i++) { u[i]=new float[m+1]; }//创建m行,m+1列数组 } void dxs::dfine() { for(int i=0;i<m;i++) { for(int j=0;j<m+1;j++) { u[i][j]=0; } } for(i=0;i<m;i++) { for(int j=0;j<m;j++) { for(int k=0;k<n;k++) { u[i][j]=u[i][j]+pow(x[k],j+i); } } } for(i=0;i<m;i++) { for(int k=0;k<n;k++) { u[i][m]=u[i][m]+pow(x[k],i)*y[k]; } } } void dxs::show() { for(int i=0;i<m;i++) { for(int j=0;j<m+1;j++) { cout<<u[i][j]<<" ";//<<endl; } cout<<endl; } ////显示具有m行m+1列u数组的各元素值 } void dxs::select_main(int k,float **p,int m) { double d; d=*(*(p+k)+k); //cout<<d; int l=k; int i=k+1; for(;i fabs(d)) { d=*(*(p+i)+k); l=i; } else continue; } if(d==0) cout<<"错误"; else { if(k!=l) { for(int j=k;j<m+1;j++) { double t; t=*(*(p+l)+j); *(*(p+l)+j)=*(*(p+k)+j); *(*(p+k)+j)=t; } } } } void dxs::gaosi() { for(int k=0;k<m;k++) { select_main(k,u,m);//调用列主元函数 for(int i=1+k;i<m;i++) { // *(*(p+i)+k)=(float) *(*(p+i)+k) / *(*(p+k)+k); u[i][k]=(float) u[i][k] / u[k][k]; } for(i=k+1;i<m;i++) { for(int j=k+1;j=0;i--) { float a=0; for(int j=i+1;j<m;j++) { //a=a + (*(*(p+i)+j) * *(*(p+j)+m)); a=a+u[i][j] * u[j][m]; } //*(*(p+i)+n-1)= (*(*(p+i)+n-1) - a) / *(*(p+i)+i); u[i][m]= (u[i][m] -a) / u[i][i]; } cout<<"方程组的解为:"<<endl; for(i=0;i<m;i++) { cout<<"a"<<i+1<<"="; cout<<u[i][m]<<endl; // l[i]=*(*(p+i)+n-1); } cout<<"y="<<u[0][m]; for(i=1;i<m;i++) { cout<<showpos<<u[i][m]<<"x"; if(i!=1)cout<<"^"<<noshowpos<<i; } cout<<endl; } dxs::~dxs() { delete[]x,y; delete []*u; } #endif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值