长期换衣行人重识别任务中目前常用的数据集
总览
在长期换衣行人重识别的任务当中,数据集的获取(尤其是对于学术环境下)是一个难点,主要的困难有以下几点:
- 采集大规模的数据集比较困难。
- 采集不同的衣服的数据集比较困难。
- 采集不同衣服不同角度的数据集比较困难。
目前也有一些数据集或多或少的能够解决相关的问题,在下面按照时间顺序进行一个总结,总结的具体内容会尽量简短的概括不同数据集的优缺点,以及相关的改进措施和未来的方向。
目前换衣数据集的主要问题
- 缺乏大规模的数据集(表现比较好的PRCC数据集也只有300+的id)
- 缺乏基于视频的数据集(可以提取步态特征,而步态我认为是最有力的特征),目前几乎全部的数据集都是基于单帧图片的。
- 大规模的数据集背景比较杂乱:例如LaST和Celeb-Reid,同时这两个数据集相互之间的cross-testing也比较好,但对于其他数据集的cross-testing比较差,因为他们俩采集过程比较相似(街拍和视频截图)。
数据集换衣/总体情况集统计
目前为止,完全换衣情况的数据集有:Deep Change,PRCC和Celebrities-reID, 总体的纯换衣服的子集占数据集总数如下图所示:
表格中换衣/总体代表有多套衣服的id占总id的比例。
DeepChange(2021)
DeepChange是2021年5月份新提出的数据集,包括1121个行人的170000多张图片,有17个摄像头,时间跨度为2年。
优点:是大规模的数据集,季节跨度有12个月,也就说明了该数据集会包含同一个人穿着四季的衣服,另外,在一天之内也有跨度,包含了不同时刻的数据。同时也有一定的图像序列可以用于提取步