论文:COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification
出处:CVPR 2020
1. 创新点
(1)定义了一种换衣服的问题,其中query由人物图像和服装模板组成。
(2)建立了一种新的名为COCAS的大规模数据集。
(3)提出了BC-Net,可以分离与衣服相关和不想关的信息,通过提供目标图像的衣服模板,使换衣服的问题成为可行。
2. 摘要
据我们所知 ,现存的ReID数据集都是假设相同的人穿着相同的衣服,并不符合实际场景。本文为解决行人更换衣服的ReID问题,提出了一种新颖的换装数据集COCAS,数据集包含了多个穿着不同衣服的相同身份的图像。COCAS总共包含了来自5,266人的62,382张身体图像。在COCAS的基础上,我们引入了一个新的换衣问题设置,其中查询图像包括一个衣服模板和一个穿着另一件衣服的行人图像。此外,我们还提出了一个双分支网络(BC-Net),可以有效地集成生物识别特征和服装特征来进行重新识别。
3. 引言
当行人更换衣服后,传统reid识别不出来的原因包括:
① 这些模型是对穿着相同衣服的身份进行训练。服装的外观被认为是模型的一种鉴别特征。
② 面部和体型等生物特征太弱,无法学习,因为它们只占身体图像的一小部分。如果只利用不清楚的人脸和体型信息,该模型很难应用于大规模的行人图像集上。
因此,本文提出了一个简单且使用的换装识别设置,如下图所示。具体的,目标图像由衣服模板图像和穿着其他衣服的同一人的图像搜索得到。例如,为了寻找失踪的孩子,家庭只需要提供一张丢失的孩子最近的照片和一张孩子目前所穿的衣服的照片。
COCAS数据集,总共包含了来自5,266人的62,382张身体图像,每个人都有5张∼25张图片和2张∼3件衣服。对于每个person,将他穿着一种衣服的图像移动到gallery中&#