矩阵形式的MMSE接收机线性滤波矩阵的推导过程(含迹的求导)

1关于矩阵迹的求导:

∂ t r [ A X B ] ∂ X = A T B T \frac{\partial tr\left[ AXB \right]}{\partial X}={ {A}^{T}}{ {B}^{T}} Xtr[AXB]=ATBT

∂ t r [ A X T B ] ∂ X = B A \frac{\partial tr\left[ A{ {X}^{T}}B \right]}{\partial X}=BA Xtr[AXTB]=BA

2关于MMSE线性接收矩阵的推导:

假设 y y y为接收信号, x x x为发射信号, C T {C}^{T} CT为滤波矩阵
Z = ∥ C T Y − X ∥ 2 = tr ⁡ ( ( C T Y − X ) ( C T Y − X ) T ) = tr ⁡ ( ( C T Y ) ( C T Y ) T − ( C T Y ) X T − X ( C T Y ) T + X X T ) = tr ⁡ ( C T Y Y T C − C T Y X T − X Y T C + X X T ) \begin{aligned} Z &=\left\|C^{T} Y-X\right\|^{2}=\operatorname{tr}\left(\left(C^{T} Y-X\right)\left(C^{T} Y-X\right)^{T}\right) \\ &=\operatorname{tr}\left(\left(C^{T} Y\right)\left(C^{T} Y\right)^{T}-\left(C^{T} Y\right) X^{T}-X\left(C^{T} Y\right)^{T}+X X^{T}\right) \\ &=\operatorname{tr}\left(C^{T} Y Y^{T} C-C^{T} Y X^{T}-X Y^{T} C+X X^{T}\right) \end{aligned} Z=CTYX2=tr((CTYX)(CTYX)T)=tr((CTY)(CTY)T(CTY)XTX(CTY)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值