1关于矩阵迹的求导:
∂ t r [ A X B ] ∂ X = A T B T \frac{\partial tr\left[ AXB \right]}{\partial X}={ {A}^{T}}{ {B}^{T}} ∂X∂tr[AXB]=ATBT
∂ t r [ A X T B ] ∂ X = B A \frac{\partial tr\left[ A{ {X}^{T}}B \right]}{\partial X}=BA ∂X∂tr[AXTB]=BA
2关于MMSE线性接收矩阵的推导:
假设 y y y为接收信号, x x x为发射信号, C T {C}^{T} CT为滤波矩阵
Z = ∥ C T Y − X ∥ 2 = tr ( ( C T Y − X ) ( C T Y − X ) T ) = tr ( ( C T Y ) ( C T Y ) T − ( C T Y ) X T − X ( C T Y ) T + X X T ) = tr ( C T Y Y T C − C T Y X T − X Y T C + X X T ) \begin{aligned} Z &=\left\|C^{T} Y-X\right\|^{2}=\operatorname{tr}\left(\left(C^{T} Y-X\right)\left(C^{T} Y-X\right)^{T}\right) \\ &=\operatorname{tr}\left(\left(C^{T} Y\right)\left(C^{T} Y\right)^{T}-\left(C^{T} Y\right) X^{T}-X\left(C^{T} Y\right)^{T}+X X^{T}\right) \\ &=\operatorname{tr}\left(C^{T} Y Y^{T} C-C^{T} Y X^{T}-X Y^{T} C+X X^{T}\right) \end{aligned} Z=∥∥CTY−X∥∥2=tr((CTY−X)(CTY−X)T)=tr((CTY)(CTY)T−(CTY)XT−X(CTY)