MMSE权向量的推导

1、书上推导过程

2、对其中关键步骤的解释

2.1 公式(2.190)的由来

所以E\left ( sx^{H} \right )就等于信号的自相关,并乘上信号的来波方向,且E\left ( sn \right )=0(噪声和信号不相关)。

2.2 公式(2.187)-(2.188)的由来

其用到了上一篇中ww^{H}为两个变量,并去掉负号得到了公式(2.188)

MVDR波束形成算法中对其权向量的推导-CSDN博客

博客中的2.2

2.3 关键的是R_{x}^{-1} 的求解

 这是由上一篇MPDR权向量推导中解释,其中的2.2小节

MPDR权向量的推导-CSDN博客

MMSE信道估计算法是一种基于贝叶斯定理的信道估计方法,它的理论推导过程如下: 假设在接收端,收到了OFDM符号$x$,它的第$k$个子载波的信号为$s_k$。我们假设信道为时不变的瑞利衰落信道,即: $$h_k = \alpha_k + j\beta_k$$ 其中,$\alpha_k$和$\beta_k$分别为瑞利衰落信道的实部和虚部,服从高斯分布,即: $$\alpha_k \sim \mathcal{N}(0,\sigma^2)$$ $$\beta_k \sim \mathcal{N}(0,\sigma^2)$$ 我们假设在第$k$个子载波上,发送了一个已知的DMRS参考信号$d_k$,则接收到的信号为: $$y_k = h_kd_k + n_k$$ 其中,$n_k$为高斯白噪声,服从$\mathcal{N}(0,N_0)$。 我们需要对信道进行估计,假设我们的估计结果为$\hat{h}_k$,则我们可以计算估计误差: $$e_k = h_k - \hat{h}_k$$ 我们可以得到信道估计的均方误差: $$\text{MSE} = E[|e_k|^2]$$ 为了最小化均方误差,我们需要找到一个最优的估计方法。由于信道是服从高斯分布的,我们可以采用最小均方误差(MMSE)准则进行估计,即: $$\hat{h}_k = E[h_k|y_k]$$ 根据贝叶斯定理,我们可以将条件概率转化为先验概率和似然函数: $$\hat{h}_k = \frac{f_{y_k|h_k}(y_k|h_k)f_{h_k}(h_k)}{f_{y_k}(y_k)}$$ 其中,$f_{y_k|h_k}(y_k|h_k)$表示在已知信道$h_k$的情况下,接收到信号$y_k$的概率密度函数;$f_{h_k}(h_k)$表示信道$h_k$的先验概率密度函数;$f_{y_k}(y_k)$表示接收到信号$y_k$的概率密度函数。 我们假设噪声$n_k$是高斯白噪声,那么在已知信道$h_k$的情况下,接收到信号$y_k$的概率密度函数可以表示为: $$f_{y_k|h_k}(y_k|h_k) = \frac{1}{\sqrt{2\pi N_0}}\exp\left(-\frac{|y_k-h_kd_k|^2}{2N_0}\right)$$ 信道$h_k$的先验概率密度函数可以表示为: $$f_{h_k}(h_k) = \frac{1}{\pi \sigma^2}\exp\left(-\frac{|h_k|^2}{\sigma^2}\right)$$ 接收到信号$y_k$的概率密度函数可以表示为: $$f_{y_k}(y_k) = \int_{-\infty}^{\infty} f_{y_k|h_k}(y_k|h_k)f_{h_k}(h_k)dh_k$$ 将上述三个式子代入到MMSE估计公式中,我们可以得到: $$\hat{h}_k = \frac{1}{\sigma^2/N_0 + d_k^2}\left(\frac{\alpha_kd_k + \beta_kj\sum_{i=1,i\neq k}^N\alpha_id_i^*}{N_0} + y_k \right)$$ 这就是MMSE信道估计算法的理论推导过程。我们可以看到,MMSE信道估计算法是一种基于贝叶斯定理的估计方法,通过最小化均方误差来得到最优的信道估计结果。同时,我们也可以看到,MMSE信道估计算法的计算复杂度相对较高,需要进行多次复杂的数学计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值