有限差分法简介
有限差分法(FDM : Finite Difference Method)是偏微分方程(PDE:Partial Differential Equation)的数值解法之一。先把计算空间按照有限size的空间大小进行分割,然后在每个子空间內的点(子空间或边界的中心)上定义物理量(未知量)。根据这些未知量间值的有限差分,求取分割后定义点间的距离等(差分商)的微分近似值,来求解PDE。
数值解法探析:有限差分法与有限体积法
本文介绍了有限差分法(FDM)和有限体积法(FVM)这两种数值解偏微分方程的方法。FDM通过在空间分割后的点上定义物理量,利用差分商近似微分;而FVM则关注子空间内物理量的平均值变化。这两种技术广泛应用于科学计算领域。
有限差分法(FDM : Finite Difference Method)是偏微分方程(PDE:Partial Differential Equation)的数值解法之一。先把计算空间按照有限size的空间大小进行分割,然后在每个子空间內的点(子空间或边界的中心)上定义物理量(未知量)。根据这些未知量间值的有限差分,求取分割后定义点间的距离等(差分商)的微分近似值,来求解PDE。

被折叠的 条评论
为什么被折叠?