【数值计算】数值解析--非线性方程的根

本文介绍了非线性方程的数值求解方法,包括2分法、牛顿-拉弗森方法、多次元牛顿-拉弗森方法、霍纳法以及DKA法。通过这些方法,可以解决线性与非线性方程的求解问题,尤其在处理超越方程和多维联立方程组时提供了有效手段。
摘要由CSDN通过智能技术生成

线性方程与非线性方程

当我们求关于rootfinding.eq1.gif的方程rootfinding.eq2.gif的解时,如果,rootfinding.eq3.gif是像

rootfinding.eq4.gif

这样的线性形方程(1次方程)的话,其解为,

rootfinding.eq5.gif

这里的rootfinding.eq6.gif。但是,rootfinding.eq3.gif是非线性方程的时候解法要复杂的多。比如,像下面这样的rootfinding.eq7.gif次代数方程(algebraic equation)的情况,

rootfinding.eq8.gif

rootfinding.eq9.gif的2次方程我们很容易求解,3次或4次方程可以通过Cardano公式或者Ferrari公式求解,然而5次以上却无法直接求解。

更不用说,还有像超越方程式(transcendental equation)这样的无穷次的代数方程(rootfinding.eq10.gif)。例如,rootfinding.eq11.gif用无穷幂级数表示的形式便是超越方程。超越方程一般无法直接求解,只能求近似解。

本文,我们对如下的非线性方程的数值求解方法进行逐一介绍。

  • 2分法
  • 牛顿-拉弗森方法
  • 多次元牛顿-拉弗森方法
  • 霍纳方法
  • DKA法

2分法 

假设rf_bisection.eq1.gif是在区间rf_bisection.eq2.gif上的函数。rf_bisection.eq3.gifrf_bisection.eq4.gif符号相反的时候(rf_bisection.eq5.gif),区间rf_bisection.eq2.gif内至少存在一个解。我们先求区间rf_bisection.eq2.gif的中点的函数值rf_bisection.eq6.gif,如果这个值的符号与rf_bisection.eq4.gif同号, 则在rf_bisection.eq7.gif内存在解。 这样的话,解的存在区间便变成了原来的rf_bisection.eq8.gif。同样,再使用rf_bisection.eq7.gif的中点的函数值,解的存在区间就变成了rf_bisection.eq9.gif。把上述步骤反复处理求得方程式的解的方法就叫做2分法(bisection method)。

bisection.jpg
图1 2分法

图1为2分法求近似解的说明图。图中解的存在区间为rf_bisection.eq10.gif。用rf_bisection.eq2.gifrf_bisection.eq10.gif进行初始赋值。 这时的中点为rf_bisection.eq11.gif。 由于图1rf_bisection.eq12.gif,解在rf_bisection.eq13.gif内存在, 令rf_bisection.eq14.gif,这时的中点为rf_bisection.eq15.gif, 由图1rf_bisection.eq16.gif,解在rf_bisection.eq17.gif内存在。上述步骤反复迭代,求rf_bisection.eq18.gif

2分法的处理顺序如下:

  1. rf_bisection.eq19.gifrf_bisection.eq20.gif
  2. 求中点rf_bisection.eq21.gif的函数值rf_bisection.eq22.gif
  3. rf_bisection.eq23.gif的时候rf_bisection.eq24.gifrf_bisection.eq25.gif时,令rf_bisection.eq26.gif
  4. 返回步骤2。

迭代终止的收敛条件如下:

rf_bisection.eq27.gif

下面为2分法的代码示例。

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值