1、PyTorch教程---简介

21 篇文章 1 订阅 ¥19.90 ¥99.00
PyTorch是Facebook AI研发的开源机器学习库,尤其适用于自然语言处理。其特点是拥有简单易用的API,动态计算图,与Python数据科学栈无缝集成。PyTorch的三个核心抽象层次包括张量、变量和模块。相较于TensorFlow,PyTorch更便于调试,具有更好的动态性,而TensorFlow则在工业界应用更广泛,适合静态计算图的构建和嵌入式框架部署。
摘要由CSDN通过智能技术生成

PyTorch被定义为一种用于Python的开源机器学习库。它用于应用程序,如自然语言处理。最初由Facebook人工智能研究组开发,以及基于它构建的Uber Pyro概率编程软件。

最初,PyTorch由Hugh Perkins开发,作为基于Torch框架的LusJIT的Python封装。有两个PyTorch变体。

PyTorch在Python中重新设计和实现了Torch,同时共享相同的核心C库以用于后端代码。PyTorch开发人员调整了这个后端代码,以高效运行Python。他们还保留了基于GPU的硬件加速以及使Lua-based Torch出名的可扩展性功能。

特点
PyTorch的主要特点如下:

简单的接口 - PyTorch提供易于使用的API;因此,它被认为是非常简单操作且运行在Python上。在这个框架中的代码执行非常容易。

Python使用 - 这个库被认为是Pythonic的,可以与Python数据科学堆栈无缝集成。因此,它可以利用Python环境提供的所有服务和功能。

计算图 - PyTorch提供了一个出色的平台,提供动态计算图。因此,用户可以在运行时更改它们。这在开发人员不知道创建神经网络模型需要多少内存时非常有用。

PyTorch以以下三个抽象级别而闻名:

张量 - 在GPU上运行的命令式n维数组。

变量 - 计算图中的节点。它存储数据和梯度。

模块 - 存储状态或可学习权重的神经网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值