在本章中,我们将讨论机器学习和深度学习概念之间的主要区别。
数据量
机器学习适用于不同数量的数据,主要用于小规模数据。另一方面,深度学习在数据量迅速增加时效率较高。以下图示了机器学习和深度学习在数据量方面的工作方式。
硬件依赖性
与传统的机器学习算法相反,深度学习算法被设计为严重依赖高端计算机。深度学习算法执行大量矩阵乘法操作,这需要大规模的硬件支持。
特征工程
特征工程是将领域知识应用于指定的特征中,以降低数据的复杂性并使学习算法能够识别出模式的过程。
例如,传统的机器学习模式关注像素和其他特征工程过程中需要的属性。深度学习算法关注来自数据的高级特征。这减少了为每个新问题开发新特征提取器的任务。