6、PyTorch教程---机器学习与深度学习的对比

21 篇文章 1 订阅 ¥19.90 ¥99.00
本文探讨了机器学习与深度学习的主要区别,包括数据量的需求,深度学习对高端硬件的依赖,以及特征工程在两者中的应用差异。深度学习在大数据量下表现出更高效率,并且能自动学习高级特征,减少了手动特征工程的需求。
摘要由CSDN通过智能技术生成

在本章中,我们将讨论机器学习和深度学习概念之间的主要区别。

数据量
机器学习适用于不同数量的数据,主要用于小规模数据。另一方面,深度学习在数据量迅速增加时效率较高。以下图示了机器学习和深度学习在数据量方面的工作方式。

硬件依赖性
与传统的机器学习算法相反,深度学习算法被设计为严重依赖高端计算机。深度学习算法执行大量矩阵乘法操作,这需要大规模的硬件支持。

特征工程
特征工程是将领域知识应用于指定的特征中,以降低数据的复杂性并使学习算法能够识别出模式的过程。

例如,传统的机器学习模式关注像素和其他特征工程过程中需要的属性。深度学习算法关注来自数据的高级特征。这减少了为每个新问题开发新特征提取器的任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值