卷积神经网络包括一个主要特性,即特征提取。以下是用于实现卷积神经网络特征提取的步骤:
步骤 1
使用“PyTorch”导入相应的模型,以创建特征提取模型。
import torch
import torch.nn as nn
from torchvision import models
步骤 2
创建一个特征提取器类,可以根据需要随时调用。
class Feature_extractor(nn.module):
def forward(self, input):
self.feature = input.clone()
return input
new_net = nn.Sequential().cuda() # the new network
target_layers = [conv_1, conv_2, conv_4] # layers you want to extract`
i = 1
for layer in list(cnn):
if isinstance(layer,nn.Conv2d):
name = "conv_"+str(i)
art_net.add_module(name,layer)
if name in target_layers:
new_net.add_module("extracto