关于统计学假设检验___自由度

本文探讨了统计学中的自由度概念,解释了如何在数据分析和实验设计中理解自由度。通过一个22例患者分为3组的方差分析案例,展示了自由度的计算方式。此外,文章强调了研究设计的重要性,特别是临床试验注册库对结果的影响。还介绍了统计学相关术语,如因子、协同变量和一般线性模型,并概述了研究设计的基本步骤和目的,包括假设检验、筛选、优化和统计建模。
摘要由CSDN通过智能技术生成

自由度

**自由度(DOF)**的概念在力学领域中似乎是非常清楚的,但是在统计应用中却很难掌握

在我们学过的力学中,在一个平面上运动的粒子有“2个自由度”:在每一个时间点,两个参数(x,y坐标)定义粒子的位置。如果粒子在空间中移动,那么它具有“3个自由度”:x、y、z坐标。

在统计中,具有n个值的一组数据有n个自由度。如果只看这些值的分布的形状,我们可以从每个值中减去样本均值。然后,剩下的数据只有n-1的自由度了

但是在我们有很多组的时候,情况就会变得比较复杂了。例如,有一个22例患者被分为3组的例子,我们想看看这三组是否有显著性差异,使用方差分析(ANOVA)中,这个例子中的自由度划分如下:

  • 总的平均值是1个自由度
  • 每组的均值是2个自由度(请记住,如果我们知道两个组的均值和总的均值,我们就能够计算出第三组的均值)
  • 偏离每组均值的残差的自由度则是剩下的19个(即22-1-2)

研究设计

最近通过一项调查显示,引入clincalreials.gov注册库(Kaplan和Irvin2015)的效果证明了良好的研究设计的重要性。比如在评估药物或者膳食补充剂用于治疗和预防心血管疾病的研究中,发现,在引入clincalreials.gov之前,57%的研究显示出阳性的结果,而在引入之后,这个数字大幅度下降仅剩8%,换句话说,没有严格的研究设计,将会使你的结果偏向你希望的方向。

统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行秋即离

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值