自由度
**自由度(DOF)**的概念在力学领域中似乎是非常清楚的,但是在统计应用中却很难掌握
在我们学过的力学中,在一个平面上运动的粒子有“2个自由度”:在每一个时间点,两个参数(x,y坐标)定义粒子的位置。如果粒子在空间中移动,那么它具有“3个自由度”:x、y、z坐标。
在统计中,具有n个值的一组数据有n个自由度。如果只看这些值的分布的形状,我们可以从每个值中减去样本均值。然后,剩下的数据只有n-1的自由度了
但是在我们有很多组的时候,情况就会变得比较复杂了。例如,有一个22例患者被分为3组的例子,我们想看看这三组是否有显著性差异,使用方差分析(ANOVA)中,这个例子中的自由度划分如下:
- 总的平均值是1个自由度
- 每组的均值是2个自由度(请记住,如果我们知道两个组的均值和总的均值,我们就能够计算出第三组的均值)
- 偏离每组均值的残差的自由度则是剩下的19个(即22-1-2)
研究设计
最近通过一项调查显示,引入clincalreials.gov注册库(Kaplan和Irvin2015)的效果证明了良好的研究设计的重要性。比如在评估药物或者膳食补充剂用于治疗和预防心血管疾病的研究中,发现,在引入clincalreials.gov之前,57%的研究显示出阳性的结果,而在引入之后,这个数字大幅度下降仅剩8%,换句话说,没有严格的研究设计,将会使你的结果偏向你希望的方向。