文献阅读笔记2: Learning Deep Representation of Appearance and Motion for Anomalous Event Detection

文章来源:BMVC 2015

作者信息:Dan Xu ,Postdoctoral Researcher ,Visual Geometry Group (VGG)
Department of Engineering Science,University of Oxford
主要内容:第一次将深度特征用于异常事件检测。提出AMDN架构,分为Appearance,Motion,Joint 3个通道,并对通道信息进行了两次融合。用SDAE(降噪自编码机)得到视频特征的稀疏表示,利用One-class SVM来检测异常事件。

网络结构
在这里插入图片描述
Appearance representation:
1.利用一个多尺度的滑动窗口来提取patches
2.将这些patches缩放到相同大小( w a , h a , c a w_a,h_a,c_a wa,ha,ca),其中 c a c_a ca为通道数,并规范到[0,1]
3.输入到堆叠4层的encoder layer,第一层的神经元个数为( v a , w a , h a , c a v_a,w_a,h_a,c_a va,wa,ha,ca),这个 v a v_a va是用来构建一个完备滤波器组的扩增量。

Motion representation:
1.固定大小为( w m , h m , c m w_m,h_m,c_m wm,hm,cm)的滑动窗口来对光流特征图像提取patches,其中 c m = 2 c_m=2 cm=2对应于光流的x,y两个坐标方向。
2.在每个通道中规范到[0,1]
3.堆叠4层的encoder layer,第一层的神经元个数为( v m , w m , h m , c m v_m,w_m,h_m,c_m vm,wm,hm,cm

Joint representation:
直接将灰度图像和光流图像提取到的patches进行逐像素融合,得到Joint representation的patches.

SDAE
在这里插入图片描述
最简单情况(3层):
encoder: f ( W , b ) f(W,b) f(W,b)
decoder: f ( W ′ , b ′ ) f(W',b') f(W,b)
hidden layer: h h h
x ′ x' x x x x加入噪声后的信号
h i = f e ( x ′ ∣ W , b ) = δ ( W x ′ + b ) h_i=f_e(x'|W,b)=\delta(Wx'+b) hi=fe(xW,b)=δ(Wx+b) (编码)
x ^ = f d ( h i ∣ W ′ , b ′ ) = s ( W ′ h i + b ′ ) \hat{x}=f_d(h_i|W',b')=s(W'h_i+b') x^=fd(hiW,b)=s(Whi+b)(解码)
target : min ⁡ W , W ′ , b , b ′ ∑ i = 1 N ∣ ∣ x i − x i ^ ∣ ∣ 2 2 + λ ( ∣ ∣ W ∣ ∣ F 2 + ∣ ∣ W ′ ∣ ∣ F 2 ) \min\limits_{W,W',b,b'}\sum_{i=1}^N||x_i-\hat{x_i}||_2^2+\lambda(||W||_F^2+||W'||_F^2) W,W,b,bmini=1Nxixi^22+λ(WF2+WF2)(最小化重构误差)
多层情况(2L+1)层
target : min ⁡ W , W ′ , b , b ′ ∑ i = 1 N k ∣ ∣ x i − x i ^ ∣ ∣ 2 2 + λ F ∑ i = 1 L ( ∣ ∣ W i k ∣ ∣ F 2 + ∣ ∣ W i ′ k ∣ ∣ F 2 ) \min\limits_{W,W',b,b'}\sum_{i=1}^{N^k}||x_i-\hat{x_i}||_2^2+\lambda _F\sum_{i=1}^L(||W_i^k||_F^2+||W_i^{'k}||_F^2) W,W,b,bmini=1Nkxixi^22+λFi=1L(WikF2+WikF2)
这可以通过梯度下降法来优化。
最终,取隐藏层的特征 s i k = δ L ( δ L − 1 ( … δ 1 ( W 1 k x i k + b 1 k ) ) s_i^k=\delta_L(\delta_{L-1}(\ldots\delta_1(W_1^kx_i^k+b_1^k)) sik=δL(δL1(δ1(W1kxik+b1k))来表示视频信息。

One-class SVM
training sample:
S = { s i k } i = 1 N k S=\{s_i^k\}_{i=1}^{N^k} S={sik}i=1Nk
target:
min ⁡ w , ρ 1 2 ∣ ∣ w ∣ ∣ 2 + 1 V N k ∑ i = 1 N k ξ i − ρ \min\limits_{w,\rho}\frac12||w||^2+\frac1{VN^k}\sum_{i=1}^{N^k}\xi_i-\rho w,ρmin21w2+VNk1i=1Nkξiρ
s t w T Φ ( s i k ) ≥ ρ − ξ i st\qquad w^T\Phi(s_i^k)\geq\rho-\xi_i stwTΦ(sik)ρξi
ξ i \xi_i ξi:松弛变量
ρ \rho ρ:超球面半径
Φ \Phi Φ:映射函数,将数据映射到其他空间
One-class SVM的思想是训练出一个超球面,使得正常数据在球面内,而异常数据在球面外。松弛变量是为了避免对少数噪声数据的过拟合。对于样本t的k通道(有Appearance,Motion,Joint3个通道)数据来说 s t k s_t^k stk,它的异常分数为:
A k ( s t k ) = ρ − w T Φ ( s t k ) A^k(s_t^k)=\rho-w^T\Phi(s_t^k) Akstk=ρwTΦ(stk)

Late Fusion
由于3个通道得到了3个异常分数,late fusion将对这3个分数进行融合:
A ( s t k ) = ∑ k ∈ { A , M , J } α k A k ( s t k ) A(s_t^k)=\sum\limits_{k\in\{A,M,J\}}\alpha^kA^k(s_t^k) A(stk)=k{A,M,J}αkAk(stk)
而权重向量将通过学习得到:
min ⁡ w s k , α s k ∑ k α k t r ( W s k S k ( W s k S k ) T ) + λ s ∣ ∣ α ∣ ∣ 2 2 \min\limits_{w_s^k,\alpha_s^k}\sum\limits_k\alpha^ktr(W_s^kS^k(W_s^kS^k)^T)+\lambda_s||\alpha||_2^2 wsk,αskminkαktr(WskSk(WskSk)T)+λsα22
s t α k > 0 , ∑ k α k = 1 st \qquad \alpha^k>0,\sum\limits_k\alpha^k=1 stαk>0kαk=1
W s k W_s^k Wsk S k S k   T S^kS^{k\, T} SkSkT的前d大特征值对应的特征向量,则 α \alpha α可以由如下方法得到:
min ⁡ α k > 0 , ∑ k α k = 1 1 2 ∣ ∣ α − c ∣ ∣ 2 2 \min\limits_{\alpha^k>0,\sum\limits_k\alpha^k=1}\frac12||\alpha-c||_2^2 αk>0kαk=1min21αc22
c = [ c A , c M , c J ] c=[c^A,c^M,c^J] c=[cA,cM,cJ]
c k = − 1 2 λ s t r ( W s k S k ( W s k S k ) T ) c^k=-\frac1{2\lambda_s}tr(W_s^kS^k(W_s^kS^k)^T) ck=2λs1tr(WskSk(WskSk)T)
最终通过 A ( s t k ) A(s_t^k) A(stk)是否大于阈值 η \eta η来判断是否为异常行为

实验结果
在这里插入图片描述
在这里插入图片描述
表1用几种最先进的方法从曲线下面积(AUC)和等差率(EER)两方面对ROC曲线进行了定量比较。从框架级的评价来看,这个方法的性能比当时的许多方法要好。此外,考虑到像素级的评估,即异常定位的准确性,使得这种方法在EER和AUC方面都优于所有的竞争方法。
表1还显示了拟议的双融合策略的优点。与早期融合和后期融合相比,AMDN保证了更好的性能。
具体来说,对于早期融合,只使用用Joint这一个支持向量机。对于后期融合,采用两条独立的外观和运动管道以及所提出的融合方案,但放弃了Joint通道。有趣的是,在这个应用程序中,后期融合策略优于早期融合策略

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值