python数据可视化-折线图

该代码段展示了一个使用Python解析JSON数据并利用Echarts库创建折线图的过程,特别是展示了如何从ab173.com获取数据,处理JSON格式,然后提取并可视化美国、日本和印度在2020年的新冠疫情确诊人数变化情况。
摘要由CSDN通过智能技术生成

可通过ab173.com查看json数据

导入json

import json

处理数据(美国为例)

f_us = open("D:/桌面/折线图数据/美国.txt", "r", encoding="UTF-8")
us_data = f_us.read()   # 美国的全部内容

规范化数据

# 去掉不和JSON规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
# 去掉和JSON规范的结尾
us_data = us_data[:-2]  # 使用切片去除最后一个不和规范的数据

JSON转python字典

us_dict = json.loads(us_data)
# 获取trend key
us_trend_data = us_dict['data'][0]['trend']

获取x,y轴数据

# 获取日期数据,用于x轴,取2020年(到314结束)
us_x_data = us_trend_data['updateDate'][:314]

# 获取确认数据,用于y轴,取2020年(到314结束)
us_y_data = us_trend_data['list'][0]['data'][:314]

生成图表

line = Line()       # 获取折线图对象

添加x,y轴数据

line.add_xaxis(us_x_data)   # x轴是公用的,所以使用一个国家的数据即可

# label_opts=LabelOpts(is_show=False) 局部设置,数据不显示
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))        

生成图表

# 调用render方法
line.render()
# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

全局设置

line.set_global_opts(
    # 标题设置
    title_opts=TitleOpts(title="2020年美日印三国确证人数对比折线图", pos_left="center", pos_bottom="1%"),
    legend_opts=LegendOpts(is_show=True),
    toolbox_opts=ToolboxOpts(is_show=True),
    visualmap_opts=VisualMapOpts(is_show=True)
)

完整示例

import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LabelOpts, LegendOpts, ToolboxOpts, VisualMapOpts
# 处理数据
f_us = open("D:/桌面/折线图数据/美国.txt", "r", encoding="UTF-8")
us_data = f_us.read()   # 美国的全部内容

f_jp = open("D:/桌面/折线图数据/日本.txt", "r", encoding="UTF-8")
jp_data = f_jp.read()   # 美国的全部内容

f_in = open("D:/桌面/折线图数据/印度.txt", "r", encoding="UTF-8")
in_data = f_in.read()   # 美国的全部内容

# 去掉不和JSON规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
in_data = in_data.replace("jsonp_1629350745930_63180(", "")

# 去掉和JSON规范的结尾
us_data = us_data[:-2]  # 使用切片去除最后一个不和规范的数据
jp_data = jp_data[:-2]
in_data = in_data[:-2]

# JSON转python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)
# print(type(us_dict))
# print(us_data)

# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)

# 获取日期数据,用于x轴,取2020年(到314结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]
# print(x_data)

# 获取确认数据,用于y轴,取2020年(到314结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]

# 生成图表
line = Line()       # 获取折线图对象

# 添加x轴数据
line.add_xaxis(us_x_data)   # x轴是公用的,所以使用一个国家的数据即可

# 添加y轴数据
# label_opts=LabelOpts(is_show=False) 局部设置,数据不显示
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))        # 添加美国的y轴数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))        # 添加日本的y轴数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))        # 添加印度的y轴数据

# 设置全局选项
line.set_global_opts(
    # 标题设置
    title_opts=TitleOpts(title="2020年美日印三国确证人数对比折线图", pos_left="center", pos_bottom="1%"),
    legend_opts=LegendOpts(is_show=True),
    toolbox_opts=ToolboxOpts(is_show=True),
    visualmap_opts=VisualMapOpts(is_show=True)
)
# 调用render方法生成图表
line.render()
# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

折线图示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值