可通过ab173.com查看json数据
导入json
import json
处理数据(美国为例)
f_us = open("D:/桌面/折线图数据/美国.txt", "r", encoding="UTF-8")
us_data = f_us.read() # 美国的全部内容
规范化数据
# 去掉不和JSON规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
# 去掉和JSON规范的结尾
us_data = us_data[:-2] # 使用切片去除最后一个不和规范的数据
JSON转python字典
us_dict = json.loads(us_data)
# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
获取x,y轴数据
# 获取日期数据,用于x轴,取2020年(到314结束)
us_x_data = us_trend_data['updateDate'][:314]
# 获取确认数据,用于y轴,取2020年(到314结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
生成图表
line = Line() # 获取折线图对象
添加x,y轴数据
line.add_xaxis(us_x_data) # x轴是公用的,所以使用一个国家的数据即可
# label_opts=LabelOpts(is_show=False) 局部设置,数据不显示
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))
生成图表
# 调用render方法
line.render()
# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()
全局设置
line.set_global_opts(
# 标题设置
title_opts=TitleOpts(title="2020年美日印三国确证人数对比折线图", pos_left="center", pos_bottom="1%"),
legend_opts=LegendOpts(is_show=True),
toolbox_opts=ToolboxOpts(is_show=True),
visualmap_opts=VisualMapOpts(is_show=True)
)
完整示例
import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LabelOpts, LegendOpts, ToolboxOpts, VisualMapOpts
# 处理数据
f_us = open("D:/桌面/折线图数据/美国.txt", "r", encoding="UTF-8")
us_data = f_us.read() # 美国的全部内容
f_jp = open("D:/桌面/折线图数据/日本.txt", "r", encoding="UTF-8")
jp_data = f_jp.read() # 美国的全部内容
f_in = open("D:/桌面/折线图数据/印度.txt", "r", encoding="UTF-8")
in_data = f_in.read() # 美国的全部内容
# 去掉不和JSON规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
in_data = in_data.replace("jsonp_1629350745930_63180(", "")
# 去掉和JSON规范的结尾
us_data = us_data[:-2] # 使用切片去除最后一个不和规范的数据
jp_data = jp_data[:-2]
in_data = in_data[:-2]
# JSON转python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)
# print(type(us_dict))
# print(us_data)
# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)
# 获取日期数据,用于x轴,取2020年(到314结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]
# print(x_data)
# 获取确认数据,用于y轴,取2020年(到314结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]
# 生成图表
line = Line() # 获取折线图对象
# 添加x轴数据
line.add_xaxis(us_x_data) # x轴是公用的,所以使用一个国家的数据即可
# 添加y轴数据
# label_opts=LabelOpts(is_show=False) 局部设置,数据不显示
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False)) # 添加美国的y轴数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False)) # 添加日本的y轴数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False)) # 添加印度的y轴数据
# 设置全局选项
line.set_global_opts(
# 标题设置
title_opts=TitleOpts(title="2020年美日印三国确证人数对比折线图", pos_left="center", pos_bottom="1%"),
legend_opts=LegendOpts(is_show=True),
toolbox_opts=ToolboxOpts(is_show=True),
visualmap_opts=VisualMapOpts(is_show=True)
)
# 调用render方法生成图表
line.render()
# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()