深度学习笔记02_CIFAR10彩色图片识别(pytorch)

一、我的环境:

1.语言环境:Python 3.8

2.编译器:Pycharm

3.深度学习环境:

  • torch==1.12.1+cu113
  • torchvision==0.13.1+cu113

二、GPU设置:

       若使用的是cpu则可忽略

import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

、导入数据:

        使用dataset下载CIFAR10数据集,并划分好训练集与测试集。

        torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的CIFAR数据集,该数据集训练集50000张图片,测试集10000张图片。

  • root (string) :数据地址,默认‘data’
  • train (string) :True-训练集,False-测试集
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化。
    train_ds = torchvision.datasets.CIFAR10('data',
                                            train=is_train,
                                            transform=torchvision.transforms.ToTensor(),  # 将数据类型转化为Tensor
                                            download=False)

        torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。 

  • dataset (string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle (bool,optional) : 如果为True,每个epoch重新排列数据。
    batch_size = 32

    train_dl = torch.utils.data.DataLoader(train_ds,
                                           batch_size=batch_size,
                                           shuffle=is_shuffle)

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape 

运行结果:

torch.Size([32, 3, 32, 32])

、数据可视化:

    # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
    plt.figure(figsize=(20, 5))
    for i, imgs in enumerate(imgs[:20]):
        # 维度缩减
        npimg = imgs.numpy().transpose((1, 2, 0))
        # 将整个figure分成2行10列,绘制第i+1个子图。
        plt.subplot(2, 10, i + 1)
        plt.imshow(npimg, cmap=plt.cm.binary)
        plt.axis('off')
    
plt.show()

 运行结果:

五、构建简单的CNN网络

        对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

网络结构图:

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3)  # 第二层卷积,卷积核大小为3*3
        self.pool3 = nn.MaxPool2d(kernel_size=2)

        # 分类网络
        self.fc1 = nn.Linear(512, 256)
        self.fc2 = nn.Linear(256, num_classes)

    # 前向传播
    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)

        return x

加载并打印模型

import torchsummary as summary

model = Model()
summary.summary(model, (3, 32, 32))

运行结果:

六、训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)  # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X, y

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

七、测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs, target

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

八、模型训练

if __name__ == "__main__":
    main()

设置超参数 

  • loss_fn = nn.CrossEntropyLoss()   # 创建损失函数
  • learn_rate = 0.01                            # 学习率
  • opt =  torch.optim.SGD(model.parameters(),lr=learn_rate)
def main():
    epochs = 10
    train_loss = []
    train_acc = []
    test_loss = []
    test_acc = []

    model = Model()
    loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
    learn_rate = 1e-2  # 学习率
    opt = torch.optim.SGD(model.parameters(), lr=learn_rate)
    load_img(get_data_loader(True, True))
    for epoch in range(epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(get_data_loader(True, True), model, loss_fn, opt)

        model.eval()
        epoch_test_acc, epoch_test_loss = test(get_data_loader(False, False), model, loss_fn)

        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)

        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
        print(
            template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
    print('Done')

运行结果:

九、模型评估

warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果:

十、总结

 本次基于深度学习的pytorch实现CIFAR10彩色图片识别项目总结如下:

1.学习卷积、池化相关知识,手动推导计算过程,加强理解卷神经网络模型;

2.torch.nn.Conv2d()详解

  • in_channels ( int ) – 输入图像中的通道数
  • out_channels ( int ) – 卷积产生的通道数
  • kernel_size ( int or tuple ) – 卷积核的大小
  • stride ( int or tuple , optional ) -- 卷积的步幅。默认值:1
  • padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
  • dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。
  • groups(int,可选):将输入通道分组成多个子组,每个子组使用一组卷积核来处理。默认值为 1,表示不进行分组卷积。
  • padding_mode (字符串,可选) – 'zeros', 'reflect', 'replicate'或'circular'. 默认:'zeros'。

3.torch.nn.Linear()详解

  • in_features:每个输入样本的大小
  • out_features:每个输出样本的大小

4.torch.nn.MaxPool2d()详解

  • kernel_size:最大的窗口大小
  • stride:窗口的步幅,默认值为kernel_size
  • padding:填充值,默认为0
  • dilation:控制窗口中元素步幅的参数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值