深度学习笔记03_pytorch实现天气识别

一、我的环境:

1.语言环境:Python 3.8

2.编译器:Pycharm

3.深度学习环境:

  • torch==1.12.1+cu113
  • torchvision==0.13.1+cu113

二、GPU设置:

       若使用的是cpu则可忽略

import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

、导入数据:

  • pathlib.Path函数将字符串类型的文件夹路径转换为pathlib.Path对象。
  • glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
  • split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中。
  • 打印classeNames列表,显示每个文件所属的类别名称
data_dir = './data/weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
print(classeNames)

运行结果:

['cloudy', 'rain', 'shine', 'sunrise']

total_datadir = './data/weather_photos'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
print(total_data)

运行结果:

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/weather_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

、数据可视化:

import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = './data/weather_photos/cloudy/'

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

# 显示图像
plt.tight_layout()
plt.show()

 运行结果:

五、划分数据集

  • train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到。
  • test_size表示测试集大小,是总体数据长度减去训练集大小。
  • 使用random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_size,test_size)

 运行结果:

(900, 225)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

运行结果:

Shape of X [N, C, H, W]  torch.Size([32, 3, 224, 224])
Shape of y  torch.Size([32]) torch.int64

六、构建简单的CNN网络

        对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为24*50*50)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

网络结构图:

import torch.nn.functional as F

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2,2)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool1(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

加载并打印模型

import torchsummary as summary

model = Model()
summary.summary(model, (3, 224, 224))

运行结果:

七、训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X, y
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

八、测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs, target
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

九、模型训练

if __name__ == "__main__":
    main()

设置超参数 

  • loss_fn = nn.CrossEntropyLoss()   # 创建损失函数
  • learn_rate = 1e-4 # 学习率
  • opt =  torch.optim.SGD(model.parameters(),lr=learn_rate)
def main():
    epochs = 5
    train_loss = []
    train_acc = []
    test_loss = []
    test_acc = []

    model = CNN()

    loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
    learn_rate = 1e-4  # 学习率
    opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

    train_transforms, total_data = get_total_data()
    train_size = int(0.8 * len(total_data))  # 训练集900
    test_size = len(total_data) - train_size  # 测试集225
    train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

    for epoch in range(epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(get_data_loader(train_dataset), model, loss_fn, opt)

        model.eval()
        epoch_test_acc, epoch_test_loss = test(get_data_loader(test_dataset), model, loss_fn)

        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)

        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
        print(
            template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
    print('Done')

运行结果:

十、模型评估

warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果:

十一、预测

torch.squeeze():对数据的维度进行压缩,去掉维数为1的的维度。

torch.unsqueeze():对数据维度进行扩充。给指定位置加上维数为一的维度。

def predict_one_image(image_path, model, transform, classes):
    # 打开待预测的图片,并转换为RGB格式
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片
    # plt.show()

    # 对图片进行数据预处理
    test_img = transform(test_img)
    img = test_img.unsqueeze(0)  # 将图片加入一个batch中,这里的batch size为1

    model.eval()  # 设置模型为评估模式
    output = model(img)  # 对图片进行分类预测

    _, pred = torch.max(output, 1)  # 获取预测结果中概率最高的类别标签
    pred_class = classes[pred]  # 根据类别标签获取类别名称
    print(f'predict_result:{pred_class},image_path:{image_path}')  # 输出预测结果
predict_one_image(image_path='./img/rain.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

 运行结果:

predict_result:rain,image_path:./img/rain.jpg

十二、增加测试集accuracy

更改优化器:

opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

        通过更改优化器,增加dropout层,测试集accuracy最高可达到95.6%。

运行结果:

十三、完成情况

🍺要求:

  1. 本地读取并加载数据(完成✅,通过案例代码学习)
  2. 测试集accuracy到达93%(完成✅,通过更改优化器实现)

🍻拔高:

  1. 测试集accuracy到达95%(完成✅,通过更改优化器和增加dropout层实现)
  2. 调用模型识别一张本地图片(完成✅,通过后续案例代码实现)

十四、总结

 本次基于深度学习的pytorch实现天气识别项目总结如下:

1.学习本地读取并加载数据,运用random_split()方法进行数据集划分;

2.学习通过指定图片进行预测,调取本地一张关于天气的图片,预测这张图片是那个类别;

3.torchvision.transforms.Compose()详解,引用k同学啊

  • torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
  • torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
  • torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
  • torchvision.utils: 其他的一些有用的方法。

4.优化器是深度学习模型的优化算法,它们的目标是通过最小化损失函数来更新模型参数,优化器的选择各有利弊,参考至常见深度学习优化器 BGD、SGD、MBGD及Adam 对比总结

5.学习Dropout层作用;

        Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半数量的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用,参考至深度学习中Dropout层的作用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值