文章目录
前言
background music : 《何不冒险》张叶蕾
是啊,为什么不冒险呢?孤注一掷地坠落也是一件非常浪漫的事情。
组成
中值定理,微分等式,微分不等式,积分等式和积分不等式,1000 上面把中值定理分为了两个部分来讲解,一个是微分中值定理,另一个是积分中值定理,微分中值定理包括五个,费马引理,罗尔定理,拉格朗日中值定理,柯西中值定理,泰勒定理,积分中值定理好像就是孤零零的一个。
另外,闭区间连续有四个定理。最值定理,有界定理,介值定理,零点定理。框架确实是比较清晰了,现在开始刷题!!!
微分中值定理
前言
22 个题,估计自己要写挺长时间的。积分中值定理是 11 个题,看出来考察频率的差距了。哈哈哈哈。
1
这题我用零点定理做的,但是解析用罗尔定理做的。用零点定理真的扯,计算量太大了,但是能做出来也是好方法。嘿嘿。能抓老鼠的猫就是好猫。
零点定理做法:首先把函数化简,然后求导,这题很容易看错,不是求原来函数的零点,哦也是,假设是原来函数的零点,那就摆在那里了,就是三个了,是求导数的零点,实际上这里就应该联想到罗尔定理了,因为两个点的函数值相等,然后区间内存在一个点使得导数为零。但是有一个问题,我们能否穷尽所有答案呢,因为我们找两个相等的函数值这件事,是不能穷尽的,只能找一些特殊点。
解析描述得非常清楚。首先根据罗尔定理找出两个零点,表示至少存在两个零点,然后一元二次方程最多两个零点,夹逼准则就能得出答案就是两个零点。
这里还是要把函数化简,然后求导,不然怎么知道导数是一元二次函数呢。
确实解析这个是最优解,我开始用零点定理,求完一阶导数,然后要找两个相等的点,中间有一个点的值为零,实际上找不到吧。不好找。实际上不是零点定理的。我是再求了一次导数,通过二阶导数分析一阶导数的图像,实际上也不需要求二阶导数,因为一阶导数是一元二次函数,就是开口向上的抛物线,肯定是先单调递减,然后单调递增的,我们分析对称轴的值,负无穷,正无穷,这三个点的极限,就可以了。无穷的时候都是正无穷,把对称轴代入发现是负数,正无穷减小到负数,再增加到正无穷,一定经过了两个零点。也还可以其实。
2
这题的关键是 0 这个点,函数不能取到,取 0 这个点的极限值吗?还真是取极限值,然后可以发现一定是正无穷,大于零,那么另一个端点必须小于零,中间的点用零点定理才可以存在零点。假设等于零呢,刚好取到端点,然后我们的区间的端点可以取到,所以答案就算出来了。确实这题也很可以。
我这个又有点运气成分了。解析真的无敌!!!需要判断一下函数的增减性,假设是单调递增或者单调递减,在这个区间内就只有一个零点,假设是其他情况,这题会变得更加复杂。
然后分类讨论在 1 的这端的三种情况,即可。或者,想象图像能非常清晰地理解这个问题。求导分析函数图像之后可以得出这个函数是单调递减的,假设右端点是零,就刚好满足条件,假设右端点是正数,就不符合条件,假设右端点是负数,符合条件。
我们要求的是最小值, 1 − k ≤ 0 → k ≥ 1 1-k\leq0 \to k \geq 1 1−k≤0→k≥1 ,可以得出最小值是 1.非常精彩啊。
3
太爽了。慢慢把这个题分析出来了,但是没用到中值定理,感觉自己更多是求导分析函数图像写的。数学题干和文科题干一般不太一样,文科题干很多冗余的信息,数学可能不写一句废话,中间需要强大的逻辑关系把一些抽象的信息连接起来,这是我写笔记的一个重要原因,我想要探索这里面的逻辑关系,我想要证明我通过自己的理性思考分析可以学会考研数学需要的知识和方法,然后取得自己满意的成绩。
假设有一个以上的零点,那么函数一定不单调,单调的函数至多存在一个零点,然后,函数不单调,那么导函数一定至少有一个零点,然后求二阶导数,分析导函数的图像,发现二阶导大于等于零,那么导函数单增,那么导函数至多有一个零点,夹逼准则,导函数有一个零点。
把这个零点表示出来,分析可以发现在这个点左边,函数单调递减,这个点右边,函数单调递增,那么这个点处的函数值必定是最小值,最小值一定要小于零,奥,就是这里用了零点定理,两个点异号,两个点围成的区间内才可能存在零点。到这里就可以算出答案了。注意 a 和 b 是同号的,因为假设 a 和 b 异号,那就是 b < 0 ,趋向于正无穷的时候,是正无穷,没有问题,哦,主要还是考虑导函数 f ′ ( x ) = a e x − b f'(x)=ae^x-b f′(x)=aex−b, b < 0 时,f’(x) 是恒大于零的,和题目矛盾。所以 a 和 b 都是正的。
补充一个点:趋向于负无穷的时候,函数 f ( x ) = a e x − b x , a > 0 , b > 0 f(x)=ae^x-bx,a>0,b>0 f(x)=aex−bx,a>0,b>0 , a e x → 0 ae^x \to 0 aex→0, − b x → + ∞ , f ( x ) → + ∞ -bx \to +\infty,f(x)\to +\infty −bx→+∞,f(x)→+∞ ,解析和我的思路是一致的。我看到一条信息,说是不要害怕天赋怪,和我们竞争的,或者我们真正要竞争的从来都不是天赋怪,我们只需要尽全力就好了。尽自己的全力,努力到以后回顾这段时光能坦荡荡地面对自己的内心就好了。
4
这类题,就是问零点的题,实际上都是分析图像。一定要把图像画出来分析。函数两个零点,导数不单调,至少有一个零点。那么,可以记住这个结论:函数两个零点,导数至少一个零点。然后求二阶导数分析导数的性态。(“性态”这个词有点高级,以后多用,实际上就是表示一些性质和图像的表征)。然后我们取极限的时候不是直接取负无穷,因为限制了 x 的取值范围,这题直接写在题干里面了,实际上我们根据真数大于零也要发现这个限制,最好发现就写在纸上,这样方便自己分析。草稿纸就相当于一个缓冲,缓存,哦对,是缓存,帮助自己思考。
5
拉格朗日,但是无从下手。为什么呢?奇怪了。我用 x 表示 θ \theta θ ,然后再用一次拉格朗日,但是出不了结果,然后用了一次泰勒展开,还是没出结果,换了个思路,先用拉格朗日,也就是先补全拉格朗日的格式,然后用 ξ \xi ξ 替换 θ x \theta x θx ,然后用 x 和 a r c s i n x arcsin x arcsinx 表示 θ 2 \theta^2 θ2 ,感觉要算出来了,结果答案算出来一个平方的数字是负数,世界观都崩塌了。。。移项的时候算错了,少了个负号,最后算出来了,感觉应该没啥问题。
实际上不需要拉格朗日。这题和拉格朗日没任何关系。就是给了一个类似于拉格朗日的背景,但是没有应用,相当于给了一个等式,然后化简求极限就可以得到最后的答案,求极限的知识感觉就是,平方差公式,然后前后之比不是负一的话,就可以直接等价无穷小,幸好自己极限学的非常扎实,然后泰勒公式那块的几个等价无穷小要记牢,x-tanx,x-sinx,x-arcsinx,x-sinx,x-ln(1+x), x − e x − 1 x-e^x-1 x−ex−1,主要就是这几个。
解析是用泰勒展开做的。
6
这个题和第七题,都是周强调的重点结论。出现在了讲义里面,1000 里面也出现了,说明这是重点结论。先写了第七题,感觉难度小一点,然后用第七题的思路,很快也把这题秒了。周认为重点是罗尔定理,张认为重点是拉格朗日定理吗,写周的题基本都是构造罗尔定理需要的函数。
这里就是用 l n 1 = 0 ln1=0 ln1=0 构造满足拉格朗日中值定理的式子,然后恒等变换就得证了。
7
这个比较容易证明,构造一个拉格朗日中值定理就可以了。利用 ln 1 = 0 这个结论。两边都可以写出来。因为 1 < ξ < 1 + 1 x 1<\xi<1+\frac{1}{x} 1<ξ<1+x1
8
套一个绝对值之后怎么用拉格朗日中值定理,有点懵了。主要是绝对值函数不可以求导啊,假设我直接套一个绝对值在导数上面,确实就直接证明出来结论了,但是感觉不是那么严谨。分类讨论试试。
题目说了函数是可导的,那么函数也是连续的。那么就不可能出现函数值跳跃的情况。那么,应该是可以分析出来的。
应该没啥问题,感觉正解应该就是分两种情况讨论,应该不可以直接导数上面套个绝对值,然后就可以算出来了。综上所述(分两种情况,分别证明)
嗷嗷卧槽!!!是不是解析用了绝对值不等式啊?
解析高度非常高。先用拉格朗日中值定理,然后绝对值不等式。行云流水,一气呵成。
导数的大小可以限制函数的变化幅度,导数的正负决定函数的增减性。也就是说,我们可以通过导数来分析函数的性态。导数表示切线的斜率,越大,假设是正的的情况下,那么,斜率越大,函数变化速度越快。
9
拉格朗日中值定理能选出答案,但是感觉这也排除不了其他几个答案。有点懵逼。
解析是从比较宏观的角度分析了一下这个函数,确实有道理,然后举了一个符合题干要求的函数,排除了剩下的三个选项,这是做选择题的技巧。另外,一个函数在趋向于无穷的时候,导数为零,可以构造为分式,分母为正无穷,分子为常数,那么, 1 2 x = ( x ) ′ , − 1 x 2 = ( 1 x ) ′ \frac{1}{2\sqrt x}=(\sqrt x)',\frac{-1}{x^2}=(\frac{1}{x})' 2x1=(x)′,x2−1=(x1)′,但是后面这个例子貌似不行,所有选项代入都是满足的。
10
先用拉格朗日中值定理,然后用洛必达,就结束了。柯西中值定理也可以。
11
拉格朗日和柯西都需要在区间可导,假设没有提供这个条件,只能考虑其他的方法,比如说导数定义之类的。
费马引理的内容是,假设函数在某点处取到极值(只能在导数为零的点取到或者不可导点处取到),在这个点处可导,那么此时的导数一定为零。
驻点就是让一阶导数为零的点。还是把电脑架起来,然后用机械键盘码字和敲代码爽一点。就这样了吧。爽就完事了。分析,练习,总结,就能提高解题能力。量变必然引起质变。
12
周没有讲解不等式的问题,基本上没有怎么讲解。但是 1000 里面挺多不等式的内容的。等式非常简单。就是构造一个函数,然后用零点定理或者罗尔定理,结合积分中值定理,积分中值定理一般用来找两个相等的点。但是不等式这个,感觉稍微有点深不见底了。基本无从下手。感觉还是没有搞清楚里面的通解。
把在 0 处的泰勒展开代入到式子里面,可以大概推导出和需要证明的不等式类似的式子,但是,这个是零的邻域内的值吧?奥,也不是,这个就是直接相等的,严格相等的,因为我们加上了拉格朗日余项,假设没加拉格朗日余项,就是近似,加了就是严格相等。所以泰勒展开之后是可以直接替换掉
s
i
n
x
sinx
sinx 这一项的。然后呢?然后
s
i
n
ξ
≤
1
sin\xi\leq1
sinξ≤1
1
2
∣
s
i
n
ξ
x
∣
≤
1
2
∣
x
∣
\frac{1}{2}|sin\xi x|\leq\frac{1}{2}|x|
21∣sinξx∣≤21∣x∣
也就是证明完毕了。
解析也是这么写的。我非常不错!!!
13
感觉要多睡觉,多运动,多做练习,多做笔记,多思考。是不是求导分析不是正解,或者不是想考察的解法,因为这个东西求导求到四阶了,虽然分析了一下真正有计算量的是二阶。感觉具体的点也解不出来。
实际上最多有两个交点,因为其中一个函数是单调的。也不一定……这个分析是错的。不需要求出具体的数值,可以发现原本函数是从正无穷减小到某个点,然后增加,然后减小到负无穷。至少两个零点,至多三个零点,分析一下到底是多少个即可。还是得求出具体或者所属的区间,不然分析不了。
前面好像分析错了,一阶导数整段都是负的,恒负。。。原函数单调递减,两端的极限是分别是正负无穷,异号,中间有且仅有一个零点。结束。
思路没啥问题,计算出错了。找了几个点,也算是算出来了。呜呜呜呜。
每个题尽量多写一些分析,我认为这样可以强迫自己思考和总结。自己写的时候为什么总是把正负号搞反,是因为睡眠不足还是不专心还是啥。。。但是我睡眠还是挺充足的哇,都是睡到自然醒的。这个题直接求导求到了三阶导数,指数函数一定是非负的,所以分析三阶导数一定是负的,所以二阶导数一定是单调递减的。但是解析这里就直接说三阶导数为零没有实根原来的函数至多有三个实根,这是什么二级结论?
幸好自己之前买了张宇的 25 的基础讲义。不然还真有点麻烦。结论写在最后面了,通俗地讲,就是求导数,然后最后判断 n 阶导数的零点个数,假设,n 阶导数有 k 个零点,这里就是 3 阶导数有 0 个零点,初始函数最多有 k + n 个零点,这里就是初始函数最多有 3 个零点,然后假设我们用零点定理对初始函数进行操作,若真可以找到 3 个零点,表示我们找到了所有的零点 。那么游戏结束。
这个结论是罗尔原话。这个证明,是证明 n 阶导数不为零的结论,就是用反证法,希望考试别真考这个东西,真考这个东西,我考试的时候先证明这个结论,然后再做题有点麻烦了,主要是不一定记得这个结论的证明方法呜呜呜。证明方法是反证法,首先假设 f(x)=0 至少有 n + 1 个零点。然后用罗尔定理,然后递归找规律判断 n 阶导数的情况。
针对具体的这个题而言,找几个特殊的点用零点定理也是比较麻烦的。另外解析里面直接用的这个结论啊也是。我也直接用就好了。我们要找三个零点,就是要找四个点,这四个点里面,相邻的两个,正负情况不一样。首先可以找正无穷和负无穷,这两个端点,取极限(找比较大和比较小的数也可以),分析负无穷可以发现函数值趋近于正无穷,分析正无穷可以发现函数值趋向负无穷。然后就只需要找两个数字就好了。
我们可以先绘制可能的图像,假设是三个零点,那么一定是先减小,然后增加,最后减小,(针对这个具体的题),我们先找一个小于零的点 x 1 , f ( x 1 ) < 0 , x 1 < x 2 , f ( x 2 ) > 0 x_1 ,f(x_1)<0,x_1<x_2,f(x_2)>0 x1,f(x1)<0,x1<x2,f(x2)>0 ,就尝试几个数字就好了。这个范围没有限制得那么严格,一下子就找到了符合条件的两个数字。就可以了。此题结束。!!!
14
周完全没讲不等式的做法。估计是放在强化了。我现在就像是没有武器,赤手空拳面对这些题目。无所谓。干就完了。
这题 a 和 b 是常数,x 是一个区间内的变量。并且出现的变量和常量都是正数。我们不知道 f(x) 的增减性,给的条件怎么转换呢。坦率地说,这题好熟悉,一定在讲义上面见过。哦,这个就是构造,一元微分讲义上实际上有这个内容,2.40 下方的常见的函数构造的总结。反应不过来是这个东西。
构造出来就可以秒了这题了吧。能选出答案,但是还有两个选项,是不是判断不了?是另外一个函数了。真有点判断不了,感觉少了一点条件。。。是不是有两个选项就是无法判断。请教了一下大佬,这个题就是判断不了剩下的两个选项。
15
这题的思路是,把方程的实根问题转换为函数的零点问题,然后,对构造的函数不断求导,通过导数的情况,分析函数的图像,然后判断需要满足什么条件才能符合题意,比如说我们发现函数先递减,再递增,题干说了有两个不等的实根,换句话说就是有两个不等的零点,那么最小值一定要严格小于零,根据这个条件就能算出 b 需要满足的条件,这题就结束了。
我们观察可以发现,
x
4
x^4
x4 的图像和二次函数的图像非常类似。
解析还提供了另外两种分析方法。一种是知道四次函数的图像,然后分析这个函数需要有两个零点,就需要极小值小于零,然后求驻点为零的点,根据二阶导数的正负情况判断这个点就是极小值,然后让极小值为负数即可。
或者考虑两个函数是相切的情况。那么此时只有一个交点,根据图像,很容易判断出来是大于还是小于,私以为这种方法操作性是比较高的。曲线和直线的切线这个思路感觉还是可以的。就是把方程问题转换为了曲线和直线的交点问题。
16
这个题用间断点的定义包装了一下,本质上是一个函数的零点的问题。间断点的定义是:函数的无定义点一定是间断点,分段函数的分段点可能是间断点。这个题,不是分段函数,所以仅考虑无定义点,也就是让分母的函数为零的点 。也就是,分母式子构成的函数的零点的个数。
对于构造的函数,我们首先求导进行分析。注意时刻关注定义域,我们的定义域是正数范围。所以取极限的时候是取零和正无穷,我每次习惯取负无穷和正无穷,这个习惯得改一改,遇到好几次了。我算出来负无穷的时候是正的,和我需要的结果是不符合的,这时才发现负无穷不在定义域里面。
我们求导之后,不断求导,求到高阶导数的正负性是一目了然的,我们此时根据结论(罗尔原话)判断,函数至多有两个实根。求出来二阶导数恒负,然后下结论函数至多两个实根。一阶导数单调递减,目测找到了一阶导数的零点,然后分析出初始函数的走势是先增加,后减小,在 e 处取到最大值,代入发现是正的,此时我们取定义域两侧的极限值,判断正负情况,用零点定理,找到两个零点,也就是题目要求的两个无定义点(间断点),游戏结束。
解析还分析了一下这两个间断点都是无穷间断点,显而易见,因为分母为零,分子式常数,不为零的常数,所以肯定是无穷间断点。
17
这个题关键是构造出函数。首先是移项,观察这个不等式,发现符合除法求导的法则,同时给的函数都是正数,所以可以构造出来,然后根据单调性解题即可。
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
<
0
⟺
[
f
(
x
)
g
(
x
)
]
′
<
0
,
g
(
x
)
>
0
f'(x)g(x)-f(x)g'(x)<0 \iff [\frac{f(x)}{g(x)}]'<0,g(x)>0
f′(x)g(x)−f(x)g′(x)<0⟺[g(x)f(x)]′<0,g(x)>0
实际上把六个常见的构造函数记住就可以了。
剩下的五个是
[
f
(
x
)
g
(
x
)
]
′
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
[
e
x
f
(
x
)
]
′
=
e
x
f
(
x
)
+
e
x
f
′
(
x
)
=
e
x
[
f
(
x
)
+
f
′
(
x
)
]
[
e
−
x
f
(
x
)
]
′
=
−
e
−
x
f
(
x
)
+
e
−
x
f
′
(
x
)
=
e
−
x
[
f
′
(
x
)
−
f
(
x
)
]
[
f
2
(
x
)
]
′
=
2
f
(
x
)
f
′
(
x
)
l
n
∣
f
(
x
)
∣
=
f
′
(
x
)
f
(
x
)
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)\\[0.5cm][e^xf(x)]'=e^xf(x)+e^xf'(x)=e^x[f(x)+f'(x)]\\[0.5cm][e^{-x}f(x)]'=-e^{-x}f(x)+e^{-x}f'(x)=e^{-x}[f'(x)-f(x)]\\[0.5cm][f^2(x)]'=2f(x)f'(x)\\[0.5cm]ln|f(x)|=\frac{f'(x)}{f(x)}
[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)[exf(x)]′=exf(x)+exf′(x)=ex[f(x)+f′(x)][e−xf(x)]′=−e−xf(x)+e−xf′(x)=e−x[f′(x)−f(x)][f2(x)]′=2f(x)f′(x)ln∣f(x)∣=f(x)f′(x)
18
这题有点没思路,说实话。哦,左边可以写成 ( 1 2 ) p + ( 1 − 1 2 ) p (\frac{1}{2})^p+(1-\frac12)^p (21)p+(1−21)p,右边可以写成 1 p + ( 1 − 0 ) p 1^p+(1-0)^p 1p+(1−0)p ,证明 f ( x ) = x p + ( 1 − x ) p f(x)=x^p+(1-x)^p f(x)=xp+(1−x)p 的极小值是 x = 1 2 x=\frac12 x=21 极大值是 x = 1 x=1 x=1 应该就可以了。极值点在驻点处取到(因为这个函数可导),这个就是费马引理吧。
解出来唯一驻点是 1 2 \frac12 21 ,那么 1 应该是最大值,也就是端点值。取 1 很明显是无定义点。幂函数的底数不能为零。算出来的驻点,二阶导数为零,这时还是极值点吗?此时根据二阶导数无法判断该点是否时极值,要从一阶导数的左右邻域去判断该店是否是极值点。奥不是算出来二阶导数,我压根就没算二阶导数,二阶导数太难表示了。我还是分析一阶导数的正负性好了。
初等函数的图像非常重要。我们可以发现这个指数函数,算了,想起来一个结论,说什么底大图低,没啥意思,对应不上。我还是直接分析函数图像好一些。我们只考虑 x 轴正方向时,同时底数时介于 0 和 1 之间的。取同一个横坐标,底数越大,图像越高。x 轴负方向是底数越大,图像越低。然后我们确实可以判断出
x
=
1
2
x=\frac12
x=21 是极小值。左侧证明完毕。
实际上,以 1 2 \frac12 21 为分界点, ( 0 , 1 2 ) (0,\frac12) (0,21) 函数单调递减, ( 1 2 , 1 ) (\frac12,1) (21,1) 函数单调递增,那么,我们考虑端点的值的较大者,即为最大值,计算出来就是 1 ,右侧证明完毕。
整体证明完毕。梳理一下,就是费马引理证明了左侧,根据导数情况分析函数图像,证明了右侧。解析和我考虑的过程是一致的。遇到一个题不要退缩,不要怂,想尽办法解决这个问题。我们一定可以解决的。这并不是什么世界难题,也不需要什么思考量,熟练基本的套路就可以了。
19
求三阶导数恒正不为零,那么函数至多有三个零点。当然第一步是把方程的实根问题转换为函数的零点的问题。首先考虑两个极限。负无穷的时候函数趋近于负无穷,正无穷的时候函数趋近于正无穷。分析导数的情况我们可以判断函数的趋势是增减增,极大值是 f(-1) ,极小值是 f(1) ,我们做一条水平线,和函数的交点的情况可能有三种,1 个交点,也就是在很上面或者很下面,2 个交点,就是刚好等于一个极值点,3 个交点,介于两个极值点之间。分三种情况分别讨论即可解决这个题。
实系数奇次方程至少有一个实根,这个是一个实系数奇次方程,至少有一个实根,至多前面分析了,针对具体的这个题,至多有三个实根。
这题解析感觉还不如我的分析,哈哈哈哈哈。
20
这题非常爽。就是周讲的罗尔定理的题。然后,差点翻车了。一阶线性微分方程必须严格卡着定义来做。 f ′ ( x ) + p ( x ) y = q ( x ) f'(x)+p(x)y=q(x) f′(x)+p(x)y=q(x) ,一定要首先转换为这个形式。然后记住 f ( x ) = e − ∫ p ( x ) d x [ ∫ q ( x ) e ∫ p ( x ) d x d x + C ] f(x)=e^{-\int p(x)dx}[\int q(x)e^{\int p(x)dx}dx+C] f(x)=e−∫p(x)dx[∫q(x)e∫p(x)dxdx+C] ,这是非齐次的解,实际上也是齐次的解,齐次的时候 q(x)=0 ,代入即可。非常非常简单。假设不知道这种解法,瞪眼基本不可能构造出函数来。我认为是这样的。周无敌!!!
另外最后就是找两个相等的点,此题就是端点,也不是算出具体的结果,是表达式完全相等,所以两点围成的区间,一定存在一个点,这个点的导数为零。罗尔定理!!!
坦率地说,这题的解析弱爆了。爽死。我非常爽。非常非常爽。爽死了。回顾一下我学的这种解法,就是首先,构造出等式,转换为微分方程的一般的形式,解出微分方程,构造的函数就是任意常数 C ,然后对这个构造的函数用罗尔定理解决此题。
21
这题我首先想到用特殊值,比如说让所有的 a 都为零,明显是满足条件的,那么,可以直接选出答案了吧?假设是这种情况,那么方程有无数个实根,取任意值都是满足条件的。但是这有点投机取巧了。这题感觉是要用零点定理来做的。
因为是没有出现导数的等式问题。那么我们要找两个函数值异号的点。但是我们怎么往条件上面去靠呢,感觉给的条件不好用。
a
0
+
a
1
2
+
a
2
3
+
a
3
4
+
⋯
+
a
n
n
+
1
=
0
a_0+\frac {a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+\cdots+\frac{a_n}{n+1}=0
a0+2a1+3a2+4a3+⋯+n+1an=0
,假设分子不全是 0 ,那么一定需要是正负交错的,或者,至少要有正数和负数。哦哦,这样就可以判断
f
(
0
)
=
a
0
f(0)=a_0
f(0)=a0 和
f
(
1
)
=
a
0
+
a
1
+
a
2
+
⋯
+
a
n
f(1)=a_0+a_1+a_2+\cdots+a_n
f(1)=a0+a1+a2+⋯+an 的正负的情况了。实际上这题可能就是为了考察而考察,因为选出答案实在是太简单了。假设
a
0
a_0
a0 是零,好像不好判断。假设
a
0
a_0
a0 是正数,是不是要放缩啊?考虑缩小项数好了。假设只有两项。
a
0
+
a
1
2
=
0
⟺
a
0
=
−
a
1
2
a_0+\frac{a_1}{2}=0 \iff a_0=-\frac{a_1}{2}
a0+2a1=0⟺a0=−2a1 ,假设
a
0
>
0
a_0>0
a0>0 ,那么
a
0
+
a
1
=
a
0
+
(
−
2
a
0
)
=
−
a
0
<
0
a_0+a_1=a_0+(-2a_0)=-a_0<0
a0+a1=a0+(−2a0)=−a0<0 ,此时出现了异号的两个函数值,中间一定存在一个零点。就可以了。但是 n 项的我确实有点不知道怎么证明。
这个构造,我说实话,太秀了。罗尔定理用的太熟练了。一步到位,这个可能也没什么好总结的,这个是一种特殊的情况,不是一般的情况,可能只适用于这类特殊的题,就是观察给的条件的特征,幂函数求导会把指数减小一,并且原来的指数作为系数,奥,这个实际上也是一个一般的情况。实际上是 f ′ ( x ) = a 0 + a 1 x + ⋯ + a n x n = 0 f'(x)=a_0+a_1x+\cdots+a_nx^n=0 f′(x)=a0+a1x+⋯+anxn=0 ,我们自己补全 f’(x) ,然后用罗尔定理就好了,或者补全为 f ( x ) = a 0 + a 1 x + ⋯ + a n x n f(x)=a_0+a_1x+\cdots+a_nx^n f(x)=a0+a1x+⋯+anxn 用零点定理,实际上我的思路就是后面这种,但是这题是需要用罗尔定理,所以是自己没有尝试罗尔定理,下次可以多尝试一下。毕竟这种等式问题,一般就是罗尔定理或者零点定理。
22
这题和前面的 17 题几乎一模一样。就是构造一个函数,然后根据导数判断增减性,然后把四个选项都判断一遍。这题是四个选项几乎都能判断,噢也不是,反正就是能选出正确答案。总的来说就是六个常见的构造的函数。
[
e
x
f
(
x
)
]
′
=
e
x
f
(
x
)
+
e
x
f
′
(
x
)
=
e
x
[
f
(
x
)
+
f
′
(
x
)
]
[
e
−
x
f
(
x
)
]
′
=
−
e
−
x
f
(
x
)
+
e
−
x
f
′
(
x
)
=
e
−
x
[
f
′
(
x
)
−
f
(
x
)
]
[
f
(
x
)
g
(
x
)
]
′
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
[
f
(
x
)
g
(
x
)
]
′
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
g
2
(
x
)
[
f
2
(
x
)
]
′
=
2
f
(
x
)
f
′
(
x
)
[
l
n
∣
f
(
x
)
∣
]
′
=
f
′
(
x
)
f
(
x
)
[e^xf(x)]'=e^xf(x)+e^xf'(x)=e^x[f(x)+f'(x)]\\[0.5cm][e^{-x}f(x)]'=-e^{-x}f(x)+e^{-x}f'(x)=e^{-x}[f'(x)-f(x)]\\[0.5cm][f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)\\[0.5cm][\frac{f(x)}{g(x)}]'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}\\[0.5cm][f^2(x)]'=2f(x)f'(x)\\[0.5cm][ln|f(x)|]'=\frac{f'(x)}{f(x)}
[exf(x)]′=exf(x)+exf′(x)=ex[f(x)+f′(x)][e−xf(x)]′=−e−xf(x)+e−xf′(x)=e−x[f′(x)−f(x)][f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)[g(x)f(x)]′=g2(x)f′(x)g(x)−f(x)g′(x)[f2(x)]′=2f(x)f′(x)[ln∣f(x)∣]′=f(x)f′(x)
小结
还算比较简单吧。非常爽。
积分中值定理
积分中值定理就是一个公式。
1
变限积分在连续的区间上一定是可导的。看到变限积分就就考虑对变限积分求导,然后观察式子,发现这个式子是一个基本不等式类型的式子,然后算出最小值是 2,当然第一步是把实根问题转换为函数零点问题,函数的最小值大于零,那么函数没有零点,方程没有实根。
一顿操作猛如虎,一看答案老实了。哈哈哈。这题是把方程问题转换为函数问题,但是我直接求导是把方程视为恒成立了。但是标准的过程不是这样的。我们是看函数的零点,我是看的导数的零点。前面判断出来是导数没有零点。这只能判断初始函数至多有一个零点。
这个用零点定理,判断端点的正负情况的时候,非常有操作性。积分上下限相等的时候定积分的值为零, a > 0 , ∫ a 0 1 4 a 2 − t 2 d t < 0 , ∫ 0 a 4 a 2 − t 2 d t > 0 a>0,\int _a^0\frac{1}{\sqrt {4a^2-t^2}}dt<0,\int_0^a\sqrt{4a^2-t^2}dt>0 a>0,∫a04a2−t21dt<0,∫0a4a2−t2dt>0 ,被积函数大于零的时候,积分上限大于积分下限,定积分是正的,积分上限小于积分下限,定积分是负的。零点定理,两个函数值异号,两个点之间存在一个点的函数值为零,也就是至少存在一个零点,前面判断了至多存在一个零点,那么,函数有且仅有一个零点。
这题操作性还是非常非常强。
2
对变限积分求导之后,算出来导数是 2 ,那么排除了 C,D 两个选项,当然我第一反应不是求导,我第一反应是积分中值定理,但是有点用不出来。因为这个中值貌似属于的区间比较大,我不知道怎么建立 ξ \xi ξ 和 x 之间的关系。最后我是把 A 选项代入,算出来不符合题意,然后选了 B ,反函数一直不是很懂到底是怎么回事。
这里的反函数的东西我不是很理解。睡了一觉有点懂了,一个值域取零,另一个函数的定义域取零,也就是,g(x)=0 时,f(0) ,其他的不管了。然后是取了一个特殊点,积分上下限相等的点,此时积分值为零,然后可以解出来剩下的参数。
总结就是变限积分求导求出斜率,中间有一步用到了反函数的性质,第二步定积分的性质求出截距。
3
我非常喜欢反函数的这种分类讨论。反函数只有在单调区间存在。假设定义区间不属于同一个单调区间,需要把定义区间通过周期性等方式转换到单调区间。
这题的第二问有点奇怪。用完积分中值定理,我感觉最后的答案是正无穷或者负无穷。但是这种题我没见过正无穷或者负无穷的。初始函数的周期是 π \pi π 这个条件虽然用上了。但是,没完全用上。算出来一个积分区间的积分是 π 2 4 \frac{\pi^2}{4} 4π2 ,从 ( 0 , + ∞ ) (0,+\infty) (0,+∞) 我们可以认为有 x π 个积分区间 , x → + ∞ \frac{x}{\pi}\text{个积分区间},x \to +\infty πx个积分区间,x→+∞,然后代入进去算出来是 π 4 \frac{\pi}{4} 4π。感觉有点像最后的答案。
解析写的非常清晰,我们换积分区间的时候,是把积分区间换到 ( 0 , π 2 ) (0,\frac{\pi}{2}) (0,2π) ,实际上主要是因为 s i n ( π − x ) = s i n x sin(\pi-x)=sinx sin(π−x)=sinx ,三角函数可以恒等变形。
这题还是解析的过程写的比较标准。这题同学和我讨论过其实。本质上和这个题是一致的。但是我还是没反应过来。我上次的观点和上面写的是一致的,但是这个方法可以用来理解,但是不是标准的做法。标准的做法是取一个周期,然后用夹逼准则取极限。
对于周期函数,x 趋近于无穷的时候,我们在无穷处取一个周期,用夹逼准则来求极限,此题有一个放缩。分式除以一个更大的数,分式更小。所以比如我们算 s ( x ) x \frac{s(x)}{x} xs(x) ,我们把小的部分放缩为 s ( n π ) ( n + 1 ) π , n → + ∞ \frac{s(n\pi)}{(n+1)\pi},n\to +\infty (n+1)πs(nπ),n→+∞ ,就可以了。
4
要证,即证,然后先用变限积分的求导,最后得到一个恒等式,我们换一下积分变量的字母,等式两边就是完全相等的式子,这就算证明出来了吗?变限积分的求导和积分中值定理,不知道什么时候用积分中值定理,什么时候用变限积分的求导。问了一下大佬,他说证明题一般是求导或者展开,积分中值定理用的实际上比较少。我下次先试一下变限积分的求导,不行再看别的方法。
这个可以证明左右两边两个函数是否相等,算出来导数相等,并且有一个公共点,(根据定积分的性质可以得到都过原点),所以两个函数相等。
5
这题该怎么证明啊?感觉没啥可以用的条件,能用的只有变限积分的求导和积分中值定理吧。积分中值定理真有点鸡肋,用不出效果。做不出这题,我非常担心考试的时候做不出这种题。啊。可恶。健身的哲学是缓慢,控制,质量。是不是用柯西中值定理啊。但是感觉看答案就没有自己思考的这个过程了。我该学的知识点应该是都学了,现在可能是需要龙场悟道了。
实际上这题都没有说 f(x) 和 g(x) 可以求导,这就意味着,我们不能对已经有的表达式进行求导,也就是不能用变限积分的求导。那对于积分问题只能用积分中值定理了。用完积分中值定理出现了两个新的参数,我们知道这两个参数的大致区间,但是无法确定具体数值,此时是等式问题,另外我们有函数是不能求导的,那么就只能用零点定理了。需要找到两个函数值异号的点。我们可以选择的点实际上只有 a 和 b 两个点。但是正负性判断不了。
看了一下解析,就是轻描淡写的几行字。非常秀。等我考上研究生,我也轻描淡写写一句,没有白练的,我终于考上了。哼。变限积分的构造还是太考验功力了。功力得非常深厚才能把这个函数构造出来。做数学题,学知识,健身,都得慢一点。
6
反常积分包括无穷积分和瑕积分,常用比较审敛法判断积分的敛散性,比较常用的结论是 p 积分。这个证明题就是求积分吧,积分不会求。。。人们为了逃避真正的思考,愿意做任何事,我真不想思考这个东西。真思考不出来,数学真好,不会就是不会。真要知道这个解题的过程,这个积分实际上也就这样,但是要是不知道这个解题过程,真的就动不了笔。但是,我们,总有不会做的题,有这个时间感慨,不如多做几个题。感觉也没必要举一反三了,能把一个题涉及到的知识点完全掌握就已经非常不错了。
∫ 1 x 2 + a 2 d x = 1 a a r c t a n x a + C \int\frac{1}{x^2+a^2}dx=\frac{1}{a}arctan\frac{x}{a}+C ∫x2+a21dx=a1arctanax+C
这题的关键是,换元把前面的证明出来,然后单个的积分是两个相等积分的和的一半,真想拍案叫绝!!!感觉还是消化旧题更加重要。练习量应该是足够了。关键是消化吸收了。当然要是练习量感觉小了,之后再加也是可以的。880 , 900 ,1800 都是非常不错的练习册。但是我目前有的资料也刷不动啊。这是关键问题。呜呜呜。这种感觉实际上都是出题人设计的模式,只有在特定的题好使。所以一本书多刷几遍是比较明智的选择。假设我可以刷很多遍这本练习题,我感觉自己的实力也会变得非常强。最后的目标就是,自己能用自己的话描述这个题涉及的知识点,能把自己讲明白,能给小白讲明白,能独立写出来,不管什么情况下遇到能快速反应并解决。
7
还是得怼。干就完了。本来以为这种题,哦是,光看是做不出来的。草稿纸上面使劲分析,说不定就可以分析出来了。积分中值定理,然后根据导数判断单调性,其他选项都是判断不了,然后有一个选项是可以判断的。实际上这些题目都是有防自学的机制的。所以尽可能还是看网课,然后不懂的多请教大佬。自己也多研究。
然后排除选项举一些反例就可以了。随便设几个符合题目条件的简单的函数,然后不符合就排除,这才是做选择题需要掌握的技能,平时就可以多练习这种技能。
另外我的解法是不是更好一些:先用积分中值定理,直接就秒了。解析的做法需要换元,然后换积分上下限,然后合并,反正比较复杂。
还剩几个题,突然不想写了,因为 8 不会写,感觉难度还是稍微高了一点,太难受了。以后有机会再写了。我先打基础,先把基础的分数尽可能拿到。
8
9
10
11
绝对值不等式
微分不等式的第八题,用到了绝对值不等式,这里补充一下。
∣
a
±
b
∣
≤
∣
a
∣
+
∣
b
∣
∣
∣
a
∣
−
∣
b
∣
∣
≤
∣
a
−
b
∣
∣
a
1
±
a
2
±
a
3
⋯
±
a
n
∣
≤
∣
a
1
∣
+
∣
a
2
∣
+
∣
a
3
∣
+
⋯
+
∣
a
n
∣
|a\pm b|\leq|a|+|b|\\[0.5cm]||a|-|b||\leq|a-b|\\[0.5cm]|a_1\pm a_2 \pm a_3\cdots\pm a_n|\leq|a_1|+|a_2|+|a_3|+\cdots+|a_n|
∣a±b∣≤∣a∣+∣b∣∣∣a∣−∣b∣∣≤∣a−b∣∣a1±a2±a3⋯±an∣≤∣a1∣+∣a2∣+∣a3∣+⋯+∣an∣
n 阶导数和初始函数的零点个数的关系
若初始函数 n 阶可导,并且 f n ( x ) ≠ 0 f^{n}(x)\neq 0 fn(x)=0 ,那么 f ( x ) = 0 f(x)=0 f(x)=0 至多有 n 个零点。
罗尔原话
若 f n ( x ) = 0 f^{n}(x)=0 fn(x)=0 至多有 k 个根,则 f ( x ) = 0 f(x)=0 f(x)=0 至多有 k + n 个根。
最后
心态一定要好,这是长距离的跑步,偶尔休息一下没啥问题,关键是要把写题的技术练上去,直击问题的本质。相信自己。慢慢来,不要着急。