【读书笔记】之矩阵知识梳理

这篇笔记详细梳理了线性代数中的核心概念,包括向量、矩阵、张量的定义,转置、乘法、点积的性质,单位矩阵和逆矩阵,线性相关和生成子空间,以及范数的介绍。进一步探讨了特殊矩阵如对角矩阵、对称矩阵和正交矩阵,以及特征分解、奇异值分解和伪逆的概念。还通过PCA算法举例说明了矩阵在数据压缩中的应用。
摘要由CSDN通过智能技术生成

       

        这篇笔记,主要记录花书第二章关于线性代数知识的回顾。希望把常用的概念和公式都记录下来,同时标记编号(为了方便,标记序号与书中一致),在后续公式推导过程中可以直接关联使用。

      梳理成文章,主要是以后看公式的时候方便查找,而不需要去翻书了~

一些概念

标量(scalar):标量就是一个单独的数。

向量(vector):向量是一列数组。

矩阵(matrix):矩阵是一个二维的数组。

张量(tensor):张量是一个超过两维的数组。

向量和矩阵的一些性质

矩阵的转置(transpose):矩阵的转置就是将矩阵验证左上角至右下角的对角线为轴的一个镜像。表示成:

.矩阵的乘法(matrix product):两个矩阵相乘,表示成:C=AB.

元素对应乘积(element-wise product):两个矩阵中对应元素乘积,表示成:

点积(dot product): 两个相同维度的x和y的点积可以看成矩阵的乘积,表示成

一些性质:在运算、简化函数的时候非常有用,在本章最后一节PCA算法中可以看到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值