这篇笔记,主要记录花书第二章关于线性代数知识的回顾。希望把常用的概念和公式都记录下来,同时标记编号(为了方便,标记序号与书中一致),在后续公式推导过程中可以直接关联使用。
梳理成文章,主要是以后看公式的时候方便查找,而不需要去翻书了~
一些概念
标量(scalar):标量就是一个单独的数。
向量(vector):向量是一列数组。
矩阵(matrix):矩阵是一个二维的数组。
张量(tensor):张量是一个超过两维的数组。
向量和矩阵的一些性质
矩阵的转置(transpose):矩阵的转置就是将矩阵验证左上角至右下角的对角线为轴的一个镜像。表示成:
.矩阵的乘法(matrix product):两个矩阵相乘,表示成:C=AB.
元素对应乘积(element-wise product):两个矩阵中对应元素乘积,表示成:
点积(dot product): 两个相同维度的x和y的点积可以看成矩阵的乘积,表示成
一些性质:在运算、简化函数的时候非常有用,在本章最后一节PCA算法中可以看到。