第二章:矩阵及其运算
1.矩阵
定义1:由
m∗n
m
∗
n
个数
aij(i=1,2,...,m;j=1,2,...,n)
a
i
j
(
i
=
1
,
2
,
.
.
.
,
m
;
j
=
1
,
2
,
.
.
.
,
n
)
排成m行n列的数表
称为m行n列矩阵简称
mxn
矩阵;为表示一个整体总是加一个括弧,并用大写黑体字母表示它,记作:
特别地,当m=nm=n时,称A为n阶方阵,n阶方阵A的从左上角到右下角那条线叫做主对角线,简称对角线,其上的元素 a11,a22,⋯,ann a 11 , a 22 , ⋯ , a n n 叫做A的主对角线元素。
- 主对角线元素全为1,其余元素全为0的方阵称为单位矩阵,记作I。
- 除主对角线其余元素全为0的方阵称为对角矩阵记作: A=diag(λ1,λ2,...,λn) A = d i a g ( λ 1 , λ 2 , . . . , λ n ) 。
- 满足 AT=A A T = A 的实方阵A称为实对称矩阵,简称对称矩阵;满足 AT¯¯¯¯¯¯¯=A A T ¯ = A 的复矩阵称为Hermite矩阵
- 所有元素全是0的矩阵称为零矩阵,记作O