大模型论文

1. BERT(bidirectional encoder representations from transformer)是谷歌公司发明的,基于自注意力机制的nlp模型。有预训练好的模型,并且开源的供所有人去做调优。是2018年的时候最优秀的nlp模型。

训练方式:自编码(Autoencoding)

预测目标:给定上下文,预测其中的一个或多个缺失单词

输入处理:双向,可以同时考虑一个词的左右上下文

适用场景:适合理解上下文,有助于信息提取、问答系统、情感分析等

架构:基于Transformer的编码器

语言模型:判别式(Discriminative)

优点:对上下文理解能力较强

缺点:生成的文本连贯性较弱

GitHub - google-research/bert: TensorFlow code and pre-trained models for BERT

GitHub - ymcui/Chinese-BERT-wwm: Pre-Training with Whole Word Masking for Chinese BERT(中文BERT-wwm系列模型)

2. GPT(Generative Pretrained Transformer)

训练方式:自回归(Autoregressive)

预测目标:在给定前面的单词时,预测下一个单词

输入处理:单向(从左往右或者从右往左)

适用场景:适合生成式任务,如文章生成、诗歌创作等

架构:基于Transformer的解码器

语言模型:生成式(Generative)

优点:预测的连贯性较强

缺点:对上下文理解能力相对较弱

GPT 1:

论文:Improving Language Understanding by Generative Pre Training

GPT 2:

论文:Language Models are Unsupervised Multitask Learner

GPT 3:

论文:Language Models are Few-Shot Learners

GPT4 :1)能理解图片的内容,能理解物理知识点

论文:

1)Sparks of Artificial General Intelligence Early experience with GPT-4

2)GPTs are GPTs:An Early Look at the Labor Market Impact Potential of Large Language Models

3)GPT-4 Architecture,Infrastructure,Training Dataset,Costs,Vision,MoE 

4)Chain of Thought Prompting Elicits Reasoning in Large Language Models

5)  SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS

6) Tree of Thoughts: Deliberate Problem Solving with Large Language Models

数据集:GSM8K是小学数学应用题基准测试

3. T5

4. Bart

可以去仔细阅读的文章如下:(待读)

1) Attention is all you need

2) BERT:Pre-training of Deep Bidirectional Transformer for language understanding

5. PaLM是谷歌开发的大语言模型

6.通用千问开源模型

GitHub - QwenLM/Qwen-7B: The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.

体验

GPT体验

https://chat.openai.com

https://poe.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值