这是我见过讲解最详细最通俗易懂的决策树(一)

这是我见过讲解最详细最通俗易懂的决策树(一)

基本流程

我们在这篇文章没有公式,我们只谈决策树里面跟大家简单的介绍了决策树是个啥东西。今天我们将深入的介绍一下决策树。
首先决策树是一类常见的机器学习方法,以二分类任务为例。我们希望从给定的数据集中学习一个模型用来对新的示例进行分类。
如下图所示:
在这里插入图片描述
这是一个我们选择西瓜时,判断该瓜是否为好瓜的决策过程。
那么什么是决策?
决策就是我们判断西瓜是不是好西瓜,这就是我们的决策,好西瓜我们就买,不是好西瓜就不买。
那么我们通过什么决策?
通过一系列西瓜特有的属性,例如这个西瓜的色泽如何?根蒂如何?敲击声音如何?等等等等。

决策树学习目的是为了产生一颗泛化能力强、可以处理未见示例的决策树。

显然,决策树是一个递归过程。在决策树算法中,有三种情况会导致递归返回:
1,当所有结点包含的样本属性全属于同一类别,无需划分;
2,当前属性集为空,或者所有样本在所有属性上取值相同,无法划分;
3,当前结点包含的样本集合为空,不能划分。
那么问题来了,上述三种情况具体是什么含义呢? 这里我用下面的西瓜选型图跟大家解释一下(个人理解)
在这里插入图片描述

搞明白上面的基本概念之后,我们面临的下一个问题就是:

如何划分选择

从开篇第一幅图及上面的后续介绍,我们可以发现,决策过程其实就是不断划分的过程。我们是希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的’纯度‘会越来越高。

信息增益
大家看到这个名词的时候不用慌张,其实仔细想一想,仅从字面意思也不难理解,信息增益的意思就是指某条信息对整体的增幅情况。简单可以理解为该信息的权重
在研究权重之前,我们先回到上面那个纯度的问题上,通常我们会用‘信息熵’来度量样本集合的纯度,熵这个词大家还有没有印象?如果忘记了可以参考我的一篇博文啥也不会,照样看懂交叉熵损失函数,这里有介绍熵的概念及公式。
当然这里我们也会简单进行一下说明:假定当前样本集合 D D D中的第 k k k类样本所占比例为 p k ( k = 1 , 2 , 3 , . . . ∣ y ∣ p_{k}(k=1,2,3,...|y| pk(k=1,2,3,...y,则 D D D的信息熵为
E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k Ent(D)=-\sum_{k=1}^{\left | y \right |}p_{k}log_{2}p_{k} Ent(D)=k=1ypklog2pk-----------------------------------------------------------------------------------------公式1
E n t ( D ) Ent(D) Ent(D)的值越小,则 D D D的纯度越高。

我们假设离散属性 a a a V V V个可能的取值,我们用a对样本集 D D D进行划分,会产生 V V V个分支结点,其中第 v v v个分支结点包含了 D D D中所有在属性 a a a上取值 a v a^{v} av的样本,记为 D v D^{v} Dv。我们可以根据上式计算出 D v D^{v} Dv的信息熵,考虑到不同的分支结点包含的样本数不同,我们给每个分支结点赋予权重 ∣ D v ∣ / ∣ D ∣ |D^{v}|/|D| Dv/D,最后我们可以计算出用属性 a a a对样本 D D D进行划分来获得信息增量
(标注: 针对上面这段话做一点简单的解释,首先什么是离散属性 a a a,这本篇西瓜问题中,属性 a a a指代表格中提到的色泽、根蒂、敲声、文理、脐部、触感这六个属性。取值为 a v a^{v} av的样本就好像取值为文理的样本,下面包含的内容越多,说明这个样本的权重越大。)信息增益的公式可以如下表示:
G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V D v D E n t ( D v ) Gain(D,a)=Ent(D)-\sum_{v=1}^{V}\frac{D^{v}}{D}Ent(D^{v}) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)-----------------------------------------------------------------公式2
通常信息增益越大,则意味着使用属性 a a a划分获得的纯度提升越大,因此我们可以用信息增益来进行决策树的划分属性选择。
在这里插入图片描述
现在就以上面的西瓜数据表为例(为了方便阅读,我把数据单独再贴一份),这个数据集包含了17个训练样例,用来学习一颗未被刨开的西瓜是否是一个好瓜的决策树。这里显然 ∣ y ∣ = 2 |y|=2 y=2。在开始学习前,根节点包含了所有的样例 D D D,其中正例 p 1 = 8 17 p_{1}=\frac{8}{17} p1=178,反例 p 2 = 9 17 p_{2}=\frac{9}{17} p2=179.根据公式1计算根节点的信息熵
E n t ( D ) = − ∑ k = 1 2 p k l o g 2 p k = − ( 8 17 l o g 2 8 17 + 9 17 l o g 2 9 17 ) = 0.998 Ent(D)=-\sum_{k=1}^{2}p_{k}log_{2}p_{k}=-(\frac{8}{17}log_{2}\frac{8}{17}+\frac{9}{17}log_{2}\frac{9}{17})=0.998 Ent(D)=k=12pklog2pk=(178log2178+179log2179)=0.998
现在我们来计算每个属性的信息增益。
我们以属性’色泽‘为例,它有三个可能的取值(青绿、乌黑、浅白)。在我们利用这个色泽属性对D进行划分的时候,可以得到三个子集,我们把这三个子集分别记为:
D 1 D^{1} D1(色泽=青绿)
D 2 D^{2} D2(色泽=乌黑)
D 3 D^{3} D3(色泽=浅白)
子集 D 1 D^{1} D1包含编号为(1,4,6,10,13,17)的6个样例,在这六个样例中,正例占 3 6 \frac{3}{6} 63,反例占 3 6 \frac{3}{6} 63 D 2 D^{2} D2包含的编号为(2,3,7,8,9,15)的六个样例,其中正反例分别占 4 6 \frac{4}{6} 64 2 6 \frac{2}{6} 62 D 3 D^{3} D3包含的编号为(5,11,12,14,16)五个例子,其中正反例分别占 1 5 \frac{1}{5} 51 4 5 \frac{4}{5} 54.根据式1我们先分别求三个分支结点的信息熵:
E n t ( D 1 ) = − ( 3 6 l o g 2 3 6 + 3 6 l o g 2 3 6 ) = 1.000 Ent(D^{1})=-(\frac{3}{6}log_{2}\frac{3}{6}+\frac{3}{6}log_{2}\frac{3}{6})=1.000 Ent(D1)=(63log263+63log263)=1.000
E n t ( D 2 ) = − ( 4 6 l o g 2 4 6 + 2 6 l o g 2 2 6 ) = 0.918 Ent(D^{2})=-(\frac{4}{6}log_{2}\frac{4}{6}+\frac{2}{6}log_{2}\frac{2}{6})=0.918 Ent(D2)=(64log264+62log262)=0.918
E n t ( D 3 ) = − ( 1 5 l o g 2 1 5 + 4 5 l o g 2 4 5 ) = 0.722 Ent(D^{3})=-(\frac{1}{5}log_{2}\frac{1}{5}+\frac{4}{5}log_{2}\frac{4}{5})=0.722 Ent(D3)=(51log251+54log254)=0.722

现在我们把上述公式带入公式2
G a i n ( D , 色 泽 ) Gain(D,色泽) Gain(D, = E n t ( D ) − ∑ v = 1 3 ∣ D v ∣ ∣ D ∣ E n t ( D v ) =Ent(D)-\sum_{v=1}^{3}\frac{\left |D^{v} \right |}{\left |D \right |}Ent(D^{v}) =Ent(D)v=13DDvEnt(Dv) = 0.998 − ( 6 17 × 1.000 + 6 17 × 0.918 + 5 17 × 0.722 ) = 0.109 =0.998-(\frac{6}{17}\times 1.000+\frac{6}{17}\times 0.918+\frac{5}{17}\times 0.722)=0.109 =0.998(176×1.000+176×0.918+175×0.722)=0.109
类似的,我们可以计算出其他属性的信息增益:
G a i n ( D , 根 蒂 ) = 0.143 Gain(D,根蒂)=0.143 Gain(D,)=0.143
G a i n ( D , 敲 声 ) = 0.141 Gain(D,敲声)=0.141 Gain(D,)=0.141
G a i n ( D , 纹 理 ) = 0.381 Gain(D,纹理)=0.381 Gain(D,)=0.381
G a i n ( D , 脐 部 ) = 0.289 Gain(D,脐部)=0.289 Gain(D,)=0.289
G a i n ( D , 触 感 ) = 0.006 Gain(D,触感)=0.006 Gain(D,)=0.006
很明显,属性’纹理‘的信息增益最大,于是它被选择用来划分属性。
下图显示了基于‘纹理’对根节点进行划分的结果,各分支结点所包含的样例子集显示在结点中。
在这里插入图片描述
接下来,决策树算法将对每个分支结点做仅一步的划分。我们以上图分支结点(‘纹理=清晰’)为例,该结点包含的样例集合 D 1 D^{1} D1中有编号为{1,2,3,4,5,6,8,10,15}的9个样例,这9个样例又分别包含了属性集合{色泽、根蒂、敲声、脐部、触感}。基于 D 1 D^{1} D1计算出各属性的信息增益为:
G a i n ( D 1 , 色 泽 ) = 0.043 Gain(D^{1},色泽)=0.043 Gain(D1,)=0.043
G a i n ( D 1 , 根 蒂 ) = 0.458 Gain(D^{1},根蒂)=0.458 Gain(D1,)=0.458
G a i n ( D 1 , 敲 声 ) = 0.331 Gain(D^{1},敲声)=0.331 Gain(D1,)=0.331
G a i n ( D 1 , 脐 部 ) = 0.458 Gain(D^{1},脐部)=0.458 Gain(D1,)=0.458
G a i n ( D 1 , 触 感 ) = 0.458 Gain(D^{1},触感)=0.458 Gain(D1,)=0.458

tips上面的计算过程还是要在简单说一下:
在这里插入图片描述
1,当我们以 D 1 D^{1} D1中有编号为{1,2,3,4,5,6,8,10,15}的9个样例为集合时,我们可以假定西瓜数据集就剩下这9行(上述这9个数字所代表的属性行)
2,本来的 E n t ( D ) Ent(D) Ent(D)中的分母由17变成了9,分子分别为7和2
3,此时计算得到的 E n t ( D ) = 0.764 Ent(D)=0.764 Ent(D)=0.764
4,色泽=青绿的正概率为 3 / 4 3/4 3/4、色泽=乌黑的正概率为 3 / 4 3/4 3/4,色泽=浅白的正概率为 100 100% 100
5,以上为此时的计算说明。
‘根蒂’、‘脐部’、‘触感’3个属性均取得了最大的信息增益,可以任选其中之一作为划分属性。类似的,对每个分支结点进行上述操作,最终得到决策树如下:
在这里插入图片描述

总结

以上就是决策树以及如何划分结点的详细说明,下一节我们会重点介绍:
增益率
基尼指数
剪枝处理
预剪枝
后剪枝
以上所有内容均来自周志华的《机器学习》,以及一点个人的心得。
这里还要感谢郭老师的大力支持。

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三景页三景页

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值