快速上手Opencv--图片输入的形式(计算机眼中的世界)
声明,这是一篇针对非计算机专业的科普性介绍。
我们常常通过深度学习的方法,利用神经网络去处理图像的识别问题。我们常用的做法就是首先输入图像数据,然后经过一系列学习手段,最后输出一个判断的结果。这里我们不谈论学习的过程,也不谈论最终的结果如何验证,我们仅聚焦于我们输入的数据。
为什么要聚焦于我们输入的数据?
这对我们理解卷积神经网络的运作方式大有裨益。
比如下图:
以上图举例,我们平时看到的到啦A梦就是一个蓝胖子,当我们把图片无限放大(当然无限是一个比较夸张的修辞手法。。。),我们看到的就不再是光滑的图像,而是一个个离散的小格子。这些小格子我们称作像素点。
下面介绍几个专有名词:
像素点:像素是最小的图像单元,这种最小的图形的单元能在屏幕上显示通常是单个的染色点,这些染色点就是像素点。
RGB:RED GREEN BLUE,就是所谓的三基色,通常我们可以调整三种颜色的不同配比得到我们看到的任何颜色。
色彩深度计算机图形学领域表示在位图或者视频帧缓冲区中储存1像素的颜色所用的位数,通常色彩深度越高,表示可用的颜色越多。色彩深度是用