log-linear模型 (对数线型模型)
一种判别式分类器,不需要生成过程
定义:
假设X是输入空间,Y是一个有限的空间,则该模型表达式为
p(y∣x;v)=ev⋅f(x,y)∑y′∈Yev⋅f(x,y′)
p(y \mid x ; v)=\frac{e^{v \cdot f(x, y)}}{\sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}}
p(y∣x;v)=∑y′∈Yev⋅f(x,y′)ev⋅f(x,y)
其中,v⋅f(x,y)v \cdot f(x, y)v⋅f(x,y) 是向量内积计算出的“score”值。
为啥叫log-linear呢?我们对上式取对数
logp(y∣x;v)=v⋅f(x,y)−log∑y′∈Yev⋅f(x,y′)
\log p(y \mid x ; v)={v \cdot f(x, y)}-\log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}
logp(y∣x;v)=v⋅f(x,y)−logy′∈Y∑ev⋅f(x,y′)