log-linear模型 (对数线型模型)

本文介绍了log-linear模型,一种无需生成过程的判别式分类器,通过计算输入x和输出y的向量内积得分,并利用对数处理概率分布,解释了其名称由来。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

log-linear模型 (对数线型模型)

一种判别式分类器,不需要生成过程
定义:
假设X是输入空间,Y是一个有限的空间,则该模型表达式为
p(y∣x;v)=ev⋅f(x,y)∑y′∈Yev⋅f(x,y′) p(y \mid x ; v)=\frac{e^{v \cdot f(x, y)}}{\sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}} p(yx;v)=yYevf(x,y)evf(x,y)
其中,v⋅f(x,y)v \cdot f(x, y)vf(x,y) 是向量内积计算出的“score”值。
为啥叫log-linear呢?我们对上式取对数
log⁡p(y∣x;v)=v⋅f(x,y)−log⁡∑y′∈Yev⋅f(x,y′) \log p(y \mid x ; v)={v \cdot f(x, y)}-\log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)} logp(yx;v)=vf(x,y)logyYevf(x,y)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值