城市研究SCI杂志论文概览_第2期

本次给大家整理的是《International Journal of Geographical Information Science》杂志2023年第37卷第9期的论文的题目和摘要,一共包括7篇SCI论文!

970181d8887aec6410d5f6964f338c58.jpeg


【论文1】

Gradient-based optimization for multi-scale geographically weighted regression

多尺度地理加权回归的梯度优化

【摘要】

Multi-scale geographically weighted regression (MGWR) is among the most popular methods to analyze non-stationary spatial relationships. However, the current model calibration algorithm is computationally intensive: its runtime has a cubic growth with the sample size, while its memory use grows quadratically. We propose calibrating MGWR with gradient-based optimization. This is obtained by analytically deriving the gradient vector and the Hessian matrix of the corrected Akaike information criterion (AICc) and wrapping them with a trust-region optimization algorithm. We evaluate the model quality empirically. Our method converges to the same coefficients and produces the same inference as the current method, but it has a substantial computational gain when the sample size is large. It reduces the runtime to quadratic convergence and makes the memory use linear with respect to sample size. Our new algorithm outperforms the existing alternatives and makes MGWR feasible for large spatial datasets.

【摘要翻译】

多尺度地理加权回归(MGWR)是分析非平稳空间关系的最流行的方法之一。然而,当前的模型校准算法计算量较大:其运行时间随样本大小呈三次方增长,而其内存使用则呈二次方增长。因此,我们建议通过基于梯度的优化来校准 MGWR。这是通过分析推导校正Akaike信息准则 (AICc) 的梯度向量和Hessian矩阵并用信赖域优化算法来获得的。我们根据经验评估模型质量。我们的方法收敛到与当前方法相同的系数并产生相同的推论,但当样本量很大时,它具有显着的计算增益。它将运行时间缩短为二次收敛,并使内存使用与样本大小呈线性关系。我们的新算法优于现有的替代方案,并使 MGWR使用于大型空间数据集。

【作者及邮箱】

Xiaodan Zhou, Esri公司, 加利福尼亚州, 美国

Renato Assunção, Esri公司, 加利福尼亚州, 美国; 计算机科学系, 米纳斯吉拉斯联邦大学, 贝洛奥里藏特, 巴西

Hu Shao, Esri公司, 加利福尼亚州, 美国

Cheng-Chia Huang, Esri公司, 加利福尼亚州, 美国

Mark Janikas, Esri公司, 加利福尼亚州, 美国

Hanna Asefaw, Esri公司, 加利福尼亚州, 美国


【论文2】

Spatial prediction of groundwater level change based on the Third Law of Geography

基于地理学第三定律的地下水位变化空间预测

【摘要】

Spatial prediction methods are an important means of predicting the spatial variation of groundwater level change. Existing methods extract spatial or statistical relationships from samples to represent the study area for inference and require a representative sample set that is usually in large quantity and is distributed across geographic or covariate space. However, samples for groundwater are usually sparsely and unevenly distributed. In this paper, an approach based on the Third Law of Geography is proposed to make predictions by comparing the similarity between each individual sample and unmeasured site. The approach requires no specific number or distribution of samples and provides individual uncertainty measures at each location. Experiments in three different watersheds across the U.S. show that the proposed methods outperform machine learning methods when available samples do not well represent the area. The provided uncertainty measures are indicative of prediction accuracy by location. The results of this study also show that the spatial prediction based on the Third Law of Geography can also be successfully applied to dynamic variables such as groundwater level change.

【摘要翻译】

空间预测方法是预测地下水位变化空间变化的重要手段。 现有方法从样本中提取空间或统计关系来表示研究区域以进行推理,并且需要通常数量庞大且分布在地理或协变量空间中的代表性样本集。然而,地下水样本通常稀疏且分布不均匀。本文提出了一种基于地理学第三定律的方法,通过比较每个样本与未测量地点之间的相似性来进行预测。该方法不需要特定的样本数量或分布,并在每个位置提供单独的不确定性测量。在美国三个不同流域进行的实验表明,当可用样本不能很好地代表该地区时,所提出的方法优于机器学习方法。所提供的不确定性度量表示按位置的预测准确性。这项研究的结果还表明,基于地理学第三定律的空间预测也可以成功应用于地下水位变化等动态变量。

【作者及邮箱】

Fang-He Zhao, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国

Jingyi Huang, 土壤科学系, 威斯康星大学麦迪逊分校, 威斯康星州, 美国, Email: jhuang426@wisc.edu

A-Xing Zhu 资源与环境学院, 中国科学院大学, 北京, 中国;土壤科学系, 威斯康星大学麦迪逊分校, 威斯康星州, 美国; 地理信息资源开发与应用协同创新中心, 南京,中国


【论文3】

A kriging interpolation model for geographical flows

地理流量的克里格插值模型

【摘要】

The kriging model can accommodate various spatial supports and has been extensively applied in hydrology, meteorology, soil science, and other domains. With the expansion of applications, it is essential to extend the kriging model for new spatial support of high-dimensional data. Geographical flows can depict the movements of geographical objects and imply the underlying mobility patterns in geographical phenomena. However, due to the bias, sparsity, and uneven quality of flow data in the real world, research about flows remains hindered by the lack of complete flow data and effective flow interpolation methods. In this study, we design a kriging interpolation model for flows based on several flow-related concepts and the autocorrelation of flows. We also analyze the second-order stationarity and anisotropy in the flow spatial random field. To illustrate the effectiveness and applicability of our method, we conduct two case studies. The former case study compares several experiments of flow density interpolation using Beijing mobile signaling data and illustrates the conditions of applicable areas. The latter case study extends our model to other flow attributes, such as travel time uncertainty, using Beijing taxi origin-destination flow data. The results of these cases demonstrate the effectiveness and high accuracy of our model.

【摘要翻译】

克里金模型可以适应多种空间支持系统,在水文学、气象学、土壤科学等领域得到广泛应用。随着应用的扩展,有必要扩展克里金模型以获得高维数据的新空间支持。地理流可以描述地理物体的移动,并暗示地理现象中潜在的移动模式。然而,由于现实世界中流量数据的偏差、稀疏性和质量参差不齐,缺乏完整的流量数据和有效的流量插值方法,对流量的研究仍然受到阻碍。在本研究中,我们基于几个与流量相关的概念和流量的自相关性,设计了流量的克里金插值模型。我们还分析了流空间随机场的二阶平稳性和各向异性。为了说明我们方法的有效性和适用性,我们进行了两个案例研究。前一个案例比较了利用北京移动信令数据进行流量密度插值的几次实验,并说明了适用区域的条件。后一个案例研究使用北京出租车起点-目的地流量数据将我们的模型扩展到其他流量属性,例如行程时间不确定性。这些案例的结果证明了我们模型的有效性和高精度。

【作者及邮箱】

Ya Fang, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国

Tao Pei, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国; 苏地理信息资源开发与利用协同创新中心,南京,中国

Ci Song, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国, Songc@lreis.ac.cn

Jie Chen, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国

Xi Wang, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国

Xiao Chen, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国

Xiao Chen, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国

Yaxi Liu, 资源与环境信息系统国家重点实验室, 中国科学院地理科学与资源研究所资,北京, 中国; 资源与环境学院, 中国科学院大学, 北京, 中国


【论文4】

CSD-RkNN: reverse k nearest neighbors queries with conic section discriminances e

CSD-R k NN:使用圆锥曲线判别法进行反向k 最近临域查询

【摘要】

The reverse k nearest neighbors (RkNN) query is a prominent yet time-consuming spatial query used in facility siting, influential domain analysis, potential customer analysis, etc. Its aim is to identify all points that consider the query point as one of their k closest points. However, when k is relatively large (e.g. k = 1000), existing RkNN techniques often struggle to provide acceptable response times (within a few seconds). To address this issue, we propose a verification approach called conic section discriminance (CSD). This method serves to determine whether points belong to the RkNN set. With CSD, only a small fraction of candidates require costly k nearest neighbors (kNN) queries for verification, while the rest can be rapidly verified with O(1) complexity. Furthermore, we propose a Voronoi-based candidate generation approach to curtail the candidate set size. By leveraging the VoR-tree structure, we integrate these two approaches to form a novel RkNN algorithm named CSD-RkNN. A comprehensive set of experiments is conducted to compare CSD-RkNN with Slice as the state-of-the-art RkNN algorithm, and VR-RkNN as the original RkNN algorithm on VoR-tree. The results indicate that CSD-RkNN consistently outperforms the other two algorithms, especially when k is relatively large.

【摘要翻译】

反向k最近邻 (R k NN) 临域查询是一种突出但耗时的空间查询。它广泛用于设施选址、影响力域分析、潜在客户分析等。其目的是识别将查询点视为他们的k 个最近点中一个的所有点。然而,当k相对较大时(例如k  = 1000),现有的R k NN技术通常难以提供可接受的响应时间(几秒内)。为了解决这个问题,我们提出了一种称为圆锥曲线判别(CSD)的验证方法。该方法用于确定点是否属于 R k NN 集合。使用 CSD,只有一小部分潜在点需要使用费时的的k 个最近邻 ( k NN) 查询来进行验证,而其余的则可以以O (1) 复杂度快速验证。此外,我们提出了一种基于 Voronoi 的候选生成方法来减少候选集的大小。通过利用 VoR 树结构,我们集成了这两种方法,形成了一种新颖的 R k NN 算法,称为 CSD-R k NN。为了验证此方法的优越性,我们进行了一组全面的实验,将 CSD-R k NN 与Slice作为最先进的 R k NN 算法,以及 VR-R k NN 作为VoR -tree中的原始 R k NN 算法进行比较。结果表明,CSD-R k NN 始终优于其他两种算法,尤其是当k相对较大时。

【作者及邮箱】

Yang Li, 地理与信息工程学院, 中国地质大学,武汉, 中国

Mingyuan Bai, RIKEN 先进智能项目中心, 东京, 日本

Qingfeng Guan, 地理与信息工程学院, 中国地质大学,武汉, 中国; Email: guanqf@cug.edu.cn

Zi Ming, 经济管理学院, 湖北工业大学, 武汉, 中国

Xun Liang, 地理与信息工程学院, 中国地质大学,武汉, 中国

Gang Liu, 计算机学院,中国地质大学,武汉, 中国


【论文5】

MVCV-Traffic: multiview road traffic state estimation via cross-view learning

MVCV-Traffic:通过跨视图学习进行多视图道路交通状态估计

【摘要】

Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.

【摘要翻译】

由于传感器技术和经济成本的限制,细粒度的城市交通数据往往不完整。然而,智能交通系统(ITS)中数据驱动的交通分析方法严重依赖于输入数据的质量。因此,准确估计缺失的交通观测是智能交通系统中一项重要的数据工程任务。底层节点相关结构的复杂性和各种缺失场景对实现高精度估计提出了重大挑战。本研究提出了一种名为 MVCV-Traffic 的新型多视图神经网络,配备跨视图学习机制,以改进流量估计。该模型的贡献可以概括为两部分:多视图学习和跨视图融合。对于多视图学习,采用几个专门的神经网络来适应不同视图的不同相关结构。对于跨视图融合,一种新的信息融合策略在特征和输出级别合并多视图消息,以增强联合相关性的学习。对两个真实世界数据集的实验表明,对于不同类型和丢失数据率的情况,所提出的模型显着优于现有的交通速度估计方法。

【作者及邮箱】

Min Deng, 地球科学与信息物理学院,中南大学,长沙,中国;地理与环境学院,江西师范大学,南昌,中国; 湖南省地理空间信息工程技术研究中心,长沙,中国

Kaiqi Chen, 地球科学与信息物理学院,中南大学,长沙,中国

Kaiyuan Lei, 地球科学与信息物理学院,中南大学,长沙,中国

Yuanfang Chen , 地球科学与信息物理学院,中南大学,长沙,中国

Yan Shi, 地球科学与信息物理学院,中南大学,长沙,中国;地理与环境学院,江西师范大学,南昌,中国; 湖南省地理空间信息工程技术研究中心,长沙,中国; Email: csu_shiy@csu.edu.cn


【论文6】

On the local modeling of count data: multiscale geographically weighted Poisson regression

计数数据的局部建模:多尺度地理加权泊松回归

【摘要】

A recent addition to the suite of techniques for local statistical modeling is the implementation of the multiscale geographically weighted regression (MGWR), a multiscale extension to geographically weighted regression (GWR). Using a back-fitting algorithm, MGWR relaxes the restrictive assumption in GWR that all processes being modeled operate at the same spatial scale and allows the estimation of a unique indicator of scale, the bandwidth, for each process. However, the current MGWR framework is limited to use with continuous data making it unsuitable for modeling data that do not typically exhibit a Gaussian distribution. This study expands the application of the MGWR framework to scenarios involving discrete response outcomes (count data following a Poisson’s distribution). Use of this new MGWR Poisson regression (MGWPR) model is demonstrated with a simulated data set and then with COVID-19 case counts within New York City at the zip code level. The results from the simulated data underscore the superiority of the MGWPR model in effectively capturing spatial processes that influence count data patterns, particularly those operating across diverse spatial scales. For empirical data, the results reveal significant spatial variations in relationships between socio-ecological factors and COVID-19 cases – variations often missed by traditional ‘global’ models.

【摘要翻译】

本地统计建模技术套件中最近添加的一项内容是实施多尺度地理加权回归 (MGWR),它是地理加权回归 (GWR) 的多尺度扩展。使用后拟合算法,MGWR 放宽了 GWR 中的限制性假设,即所有建模过程都在相同的空间尺度上运行,并允许估计每个过程的唯一尺度指标(带宽)。然而,当前的 MGWR 框架仅限于使用连续数据,因此不适合对通常不呈现高斯分布的数据进行建模。本研究将 MGWR 框架的应用扩展到涉及离散响应结果(遵循泊松分布的计数数据)的场景。通过模拟数据集以及纽约市邮政编码级别的 COVID-19 病例数来演示这一新的 MGWR 泊松回归 (MGWPR) 模型的使用。模拟数据的结果强调了 MGWPR 模型在有效捕获影响计数数据模式的空间过程方面的优越性,特别是那些跨不同空间尺度运行的空间过程。对于实证数据,结果揭示了社会生态因素与 COVID-19 病例之间关系的显着空间变化——传统“全球”模型经常忽略的变化。

【作者及邮箱】

Jing Li,中国科学院动物研究所动物生物多样性保护与害虫综合治理重点实验室,北京,中国北京; 中国科学院动物研究所动物系统学与进化重点实验室,北京,中国; Email: jingli2018@ioz.ac.cn

Mehak Sachdeva,城市科学与进步中心,坦登工程学院,纽约大学,纽约,美国

A. Stewart Fotheringham, 地理科学与城市规划学院,亚利桑那州立大学,亚利桑那州,美国

Ziqi Li , 地理系,佛罗里达州立大学,佛罗里达州,美国

Hanchen Yu,城市治理与设计学院,香港科技大学(广州),广州,中国


【论文7】

A raster-based method for the hierarchical selection of river networks based on stream characteristics

一种基于栅格与河流特征的河网分级方法

【摘要】

Computer screens often constrain the level of detail and clarity of displays. High-density data require a predefined strategy to select significant features hierarchically to allow interactive data zooming. Although many methods are available for hierarchically selecting rivers from vector data, some approaches for raster data are better than others for maintaining accuracy when the original river data are in a raster format during generalization. In this study, a raster-based approach is proposed to allow hierarchical superpixel selection in river networks. Linear spectral clustering segmentation was applied to divide the original raster river networks into superpixels at multiple levels. A graph was constructed to organize the generated river network superpixels based on the distances between adjacent superpixels by considering the weights determined by the four types of rules. Finally, the total weight values were ranked, the river-network superpixels were selected according to their weights, and the redundant pixels at the river-network intersections were removed. Compared with the traditional vector selection method, the proposed superpixel river network selection method can effectively consider the characteristics of river width without artificial river grading and preserve the main structure and connectivity features during hierarchical mapping. Notably, the average geometry and density changes decreased by 15.8% and 5.1%, respectively.

【摘要翻译】

计算机屏幕通常会限制显示的细节水平和清晰度。高密度数据需要预定义的策略来分层选择重要特征,以允许交互式数据缩放。尽管有许多方法可用于从矢量数据中分层选择河流,但当原始河流数据在泛化过程中采用栅格格式时,某些用于栅格数据的方法比其他方法更能保持准确性。在本研究中,提出了一种基于栅格的方法来允许河流网络中的分层超像素选择。应用线性光谱聚类分割将原始栅格河网划分为多个级别的超像素。构建了一个图,通过考虑四种规则确定的权重,根据相邻超像素之间的距离来组织生成的河网超像素。最后对总权重值进行排序,根据权重选择河网超像素,去除河网交汇处的冗余像素。与传统的矢量选择方法相比,所提出的超像素河网选择方法可以有效考虑河流宽度特征,无需人工分级河流,并且在分层制图时保留主要结构和连通性特征 - 尤其是,平均几何形状和密度变化分别减少了 15.8% 和 5.1%。

【作者及邮箱】

Yilang Shen,  地球空间工程与科学学院,中山大学,珠海,中国

Rong Zhao,  万科公共卫生学院,清华大学,北京,中国; Email: 2010301130020@whu.edu.cn

Tinghua Ai,资源与环境科学学院,武汉大学,武汉,中国

Fengfeng Han,唯智信息技术(上海)股份有限公司,中国武汉

Su Ding,环境与资源科学学院,浙江农林大学,浙江,中国

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值