Robotics, Vision and Control (Fundamental Algorithms in MATLAB)学习笔记 02_第二章 位置与姿态描述

本文是关于Robotics, Vision and Control (在MATLAB中的基础算法)的学习笔记,重点介绍了位置与姿态的描述,包括二维和三维空间中的位姿表示、旋转矩阵、齐次变换矩阵、单位四元数等概念,并给出了MATLAB的相关应用。" 80518205,7684106,Python实现Excel列名称转换,"['Python编程', '数据处理', '算法', 'Excel接口', '编码转换']
摘要由CSDN通过智能技术生成

最近在学习机器人学相关知识,记录书中知识点,以便回顾复习。
请看这里:本文仅供个人学习交流使用~~

第二章 位置与姿态描述

位姿

坐标系的位置(position)和方向(orientation)总称为位姿 (pose),图形上表示为一组坐标轴。相对于一个参考坐标系的某个坐标系的相对位姿 (relative pose) 用符号ξ表示。
pose
上图所示两个坐标系{A},{B},以及{B}相对于{A}的相对位姿。

相对位姿

可以认为相对位姿描述一组动作——对{A}施加平移和旋转转化为{B}。
A ξ B ^{A} \xi_{B} AξB点P可以用任何一个坐标系表示。 运算符“·”将一个向量转换为一个新的向量,它们用一个不同的坐标系来描述相同的点。
A p = A ξ B ⋅ B p ^{A} \boldsymbol{p}=^{A} \xi_{B} \cdot^{B} \boldsymbol{p} Ap=AξBBp
relative pose
​图示中点P可以用相对于坐标系{A},{B}或{C}的坐标向量表示,这些坐标系用相对位姿描述 。
相对位姿可以被合成(compose)或组合(compound) 。
A ξ C = A ξ B ⊕ B ξ C ^{A} \xi_{C}=^{A} \xi_{B} \oplus^{B} \xi_{C} AξC=AξBBξC同理,在这种情况下,点P可以用下式表示 。
A p = ( A ξ B ⊕ B ξ C ) ⋅ C p ^{A} \boldsymbol{p}=\left(^{A} \xi_{B} \oplus^{B} \xi_{C}\right) \cdot^{C} p Ap=(AξBBξC)Cp注意,在机器人的位姿中下述符号表示相对位姿的合成 。
⊕ \oplus 在这里,我们给出位姿的代数运算法则。
algebraic rules to the pose

总结​

1.一个点用坐标向量表示,它代表该店在参考坐标系中的位移。
2.一个刚体可以有其上的一组点代表,该刚体可以用单独一个坐标系描述,并且组成它的点可以用它们在该坐标系中的位移来表示。
3.一个物体在坐标系中的位置和方向称为位姿。
4.一个相对位姿表示一个坐标系相对于另一个坐标系的位姿,记作代数变量ξ。
5.一个点可以用不同坐标系中的不同坐标向量来描述,向量之间通过坐标系相对位姿来转换,其运算符为“·”。
6.用相对位姿写成的代数表达式是可以进行代数运算的。

二维空间位姿描述

在这里插入图片描述
坐标系{B}的原点被向量t = (x,y)所取代,然后逆时针旋转一个角度θ。因此,位姿的一个具体表示如下式所示。
A ξ B ∼ ( x , y , θ ) ^{A} \xi_{B} \sim(x, y, \theta) AξB(x,y,θ)

旋转矩阵 rotation matrix

在这里插入图片描述
创建坐标系{V},其坐标轴平行于坐标系{A}的轴,原点与坐标系{B}的原点重合。
点P在坐标系{V}和{B}中的向量表示,记为式(2.1)和式(2.2)。
V p = V x x ^ V + V y y ^ V = ( x ^ V y ^ V ) ( V x V y ) B p = B x x ^ B + B y y ^ B = ( x ^ B y ^ B ) ( B x B y ) \begin{array}{l}{^{V} p=^{V} x \hat{x}_{V}+^{V} y \hat{y}_{V}=\left(\hat{x}_{V} \quad \hat{y}_{V}\right)\left(\begin{array}{c}{^{V} x} \\ {^{V}y}\end{array}\right)} \\ {^{B} p=^{B} x \hat{x}_{B}+^{B} y \hat{y}_{B}=\left(\hat{x}_{B} \quad \hat{y}_{B}\right)\left(\begin{array}{c}{^{B} x} \\ {^{B} y}\end{array}\right)}\end{array} Vp=Vxx^V+Vyy^V=(x^Vy^V)(VxVy)Bp=Bxx^B+Byy^B=(x^By^B)(BxBy)坐标系{B}的两个基向量可以通过坐标系{V}的两个基向量表示,记为式(2.3) 。
x ^ B = cos ⁡ θ ⋅ x ^ V + sin ⁡ θ ⋅ y ^ V y ^ B = − sin ⁡ θ ⋅ x ^ V + cos ⁡ θ ⋅ y ^ V \begin{aligned} \hat{x}_{B} &=\cos \theta \cdot \hat{x}_{V}+\sin \theta \cdot \hat{y}_{V} \\ \hat{y}_{B} &=-\sin \theta \cdot \hat{x}_{V}+\cos \theta \cdot \hat{y}_{V} \end{aligned} x^By^B=cosθx^V+sinθy^V=sinθx^V+cosθy^V将式(2.3)整理为矩阵形式,记为式(2.4) 。
( x ^ B y ^ B ) = ( x ^ V y ^ V ) ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) \left(\begin{array}{cc}{\hat{x}_{B}} & {\hat{y}_{B}}\end{array}\right)=\left(\begin{array}{cc}{\hat{x}_{V}} & {\hat{y}_{V}}\end{array}\right)\left(\begin{array}{cc}{\cos \theta} & {-\sin \theta} \\ {\sin \theta} & {\cos \theta}\end{array}\right) (x^By^B)=(x^Vy

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值