点或积分区域的对称性,积分结果的对称性

总结就是绕谁对称谁不变(绕轴面对称的),轮换约束不变(轮换对称性的)

空间中位置对称的点

F(x,y)=0, F(x,y,z)=0所表示的曲线,曲面

f(x,y), f(x,y,z)所表示的“密度函数”

在这里插入图片描述

积 分 区 域 的 对 称 性 : x 2 + y 2 − 4 = 0 有 ( x , y ) 必 有 ( − x , − y ) , ( − x , y ) , ( x , − y ) 积分区域的对称性:x^2+y^2-4=0有(x,y)必有(-x,-y),(-x,y),(x,-y) x2+y24=0(x,y)(x,y),(x,y),(x,y)

F(x,y,z)=0所表示的曲面

面积分,三重积分积分区域的对称性

关于原点对称F(x,y,z)=F(-x,-y,-z)或F(x,y,z)=-F(-x,-y,-z)

关于X轴 F(x,y,z)=F(x,-y,-z)或F(x,y,z)=-F(x,-y,-z)

关于XOY F(x,y,z)=F(x,y,-z)或(x,y,z)=-F(x,y,-z)

f(x,y,z)=f(x,-y,z) (x,y,z)与(x,-y,z) 关于XOZ对称

积分区间的对称

x + y + z = 0 x+y+z=0 x+y+z=0
在这里插入图片描述
x + y 2 + z 2 = 0 x+y^2+z^2=0 x+y2+z2=0
在这里插入图片描述
y + z = 0 y+z=0 y+z=0
在这里插入图片描述
z 2 = 1 z^2=1 z2=1
在这里插入图片描述
z = 0 z=0 z=0
在这里插入图片描述

轮换对称性(轮换约束不变)

积 分 区 域 : F ( x , y , z ) = 0 中 的 变 量 轮 换 不 改 变 表 达 式 ( 二 重 积 分 轮 换 对 称 性 不 需 要 考 虑 被 积 函 数 是 否 对 称 ) : 如 x + y + z = 0 , x 2 + y 2 + z 2 − 1 = 0 对 于 二 重 积 分 : 积 分 区 域 关 于 y = x 对 称 ( 直 观 ) , 或 D 的 约 束 轮 换 x , y 不 变 积分区域:F(x,y,z)=0中的变量轮换不改变表达式(二重积分轮换对称性不需要考虑被积函数是否对称):\\ 如x+y+z=0,x^2 + y^2 +z^2-1=0\\ 对于二重积分:积分区域关于y=x对称(直观),或D的约束轮换x,y不变 F(x,y,z)=0():x+y+z=0,x2+y2+z21=0y=x()Dxy
若积分区间具有轮换对称性
∬ ∑ f ( x , y , z ) d S = ∬ ∑ f ( y , z , x ) d S = ∬ ∑ f ( z , x , y ) d S ∬ ∑ f ( x ) d S = ∬ ∑ f ( y ) d S = ∬ ∑ f ( z ) d S ( 特 殊 情 况 ) ∬ ∑ f ( x , y , z ) d S = 1 3 ∬ ∑ f ( z , x , y ) + f ( y , z , x ) + f ( z , x , y ) d S ( 二 重 积 分 就 是 1 2 , 注 意 应 用 是 不 同 的 , 线 面 积 分 可 代 , 重 积 分 不 可 代 , 二 重 积 分 的 应 用 见 例 题 ) \iint_{∑} f(x,y,z)dS=\iint_{∑} f(y,z,x)dS=\iint_{∑} f(z,x,y)dS\\ \iint_{∑} f(x)dS=\iint_{∑} f(y)dS=\iint_{∑} f(z)dS(特殊情况)\\ \iint_{∑} f(x,y,z)dS=\frac{1}{3}\iint_{∑} f(z,x,y)+f(y,z,x)+f(z,x,y)dS(二重积分就是\frac{1}{2},注意应用是不同的\\,线面积分可代,重积分不可代,二重积分的应用见例题)\\ f(x,y,z)dS=f(y,z,x)dS=f(z,x,y)dSf(x)dS=f(y)dS=f(z)dSf(x,y,z)dS=31f(z,x,y)+f(y,z,x)+f(z,x,y)dS(21,线)
对于第二类曲面积分要求轮换的顺序为x->y->z->x:
条 件 : 投 影 的 二 重 积 分 的 区 域 相 同 , 定 向 的 符 号 相 同 条件:投影的二重积分的区域相同,定向的符号相同
∬ ∑ f ( x , y , z ) d y d z = ∬ ∑ f ( y , z , x ) d z d x = ∬ ∑ f ( z , x , y ) d x d y ∬ ∑ f ( x , y , z ) d y d z = 1 3 ∬ ∑ f ( z , x , y ) d y d z + f ( y , z , x ) d z d x + f ( z , x , y ) d x d y \iint_{∑} f(x,y,z)dydz=\iint_{∑} f(y,z,x)dzdx=\iint_{∑} f(z,x,y)dxdy\\ \iint_{∑} f(x,y,z)dydz=\frac{1}{3}\iint_{∑} f(z,x,y)dydz+f(y,z,x)dzdx+f(z,x,y)dxdy f(x,y,z)dydz=f(y,z,x)dzdx=f(z,x,y)dxdyf(x,y,z)dydz=31f(z,x,y)dydz+f(y,z,x)dzdx+f(z,x,y)dxdy
注:轮换对称性如果考虑函数的对称性,其实也是“绕轴”对称性,(以二重积分为例)
∬ D f ( x , y ) d x d y = { 0 f(x,y)=-f(y,x) 2 ∬ D 1 f ( x , y ) d x d y = 2 ∬ D 1 f ( y , x ) d x d y f(x,y)=f(y,x) \iint_{D} f(x,y)dxdy=\begin{cases} 0& \text{f(x,y)=-f(y,x)}\\ 2 \iint_{D_1} f(x,y)dxdy=2 \iint_{D_1} f(y,x)dxdy & \text{f(x,y)=f(y,x)} \end{cases} Df(x,y)dxdy={02D1f(x,y)dxdy=2D1f(y,x)dxdyf(x,y)=-f(y,x)f(x,y)=f(y,x)

例:

设 曲 面 ∑ 是 z = 4 − x 2 − y 2 的 上 侧 , 求 ∬ ∑ x y d y d z + x d z d x + x 2 d x d y 设曲面 ∑是z=\sqrt{4-x^2-y^2}的上侧,求\iint_{∑} xydydz+xdzdx+x^2dxdy z=4x2y2 xydydz+xdzdx+x2dxdy
在这里插入图片描述

令 : ∑ 1 是 x = 4 − y 2 − z 2 取 前 侧 , ∑ 2 是 x = − 4 − y 2 − z 2 取 后 侧 ∬ ∑ x y d y d z = 2 ∬ ∑ 1 x y d y d z 区 域 关 于 Y O Z 对 称 , 是 x 的 奇 函 数 , 由 第 二 类 曲 面 积 分 的 对 称 性 = 2 ∬ ∑ 1 x y d y d z = 2 ∬ ∑ 1 4 − x 2 − y 2 y d y d z 第 二 类 曲 面 积 分 化 为 二 重 积 分 , 一 般 地 , 都 是 这 个 形 式 第 二 类 曲 面 积 分 的 计 算 , 一 般 地 , 因 没 学 二 重 积 分 换 元 法 , 都 是 这 个 形 式 , 参 数 形 式 f ( x , y , z ( x , y ) ) d x d y = 0 二 重 积 分 的 对 称 性 ∬ ∑ x d z d x = 0 ∬ ∑ x 2 d x d y = ∬ x 2 + y 2 ≤ 4 x 2 d x d y = = 1 2 ∬ x 2 + y 2 ≤ 4 x 2 + y 2 d x d y 二 重 积 分 轮 换 对 称 性 = 1 2 ∫ 0 2 π d θ ∫ 0 2 r 3 d r = 4 π 令:∑_{1}是x=\sqrt{4-y^2-z^2}取前侧,∑_{2}是x=-\sqrt{4-y^2-z^2}取后侧\\ \iint_{∑} xydydz =2\iint_{∑_1} xydydz { \color{blue} 区域关于YOZ对称,是x的奇函数,由第二类曲面积分的对称性}\\ =2\iint_{∑_1} xydydz =2\iint_{∑_1} \sqrt{4-x^2-y^2}ydydz { \color{blue} 第二类曲面积分化为二重积分,一般地,都是这个形式}\\ { \color{blue} 第二类曲面积分的计算,一般地,因没学二重积分换元法,都是这个形式,参数形式f(x,y,z(x,y))dxdy}\\ =0 { \color{blue} 二重积分的对称性}\\ \iint_{∑} xdzdx=0\\ \iint_{∑} x^2dxdy= \iint_{x^2+y^2\leq 4 } x^2dxdy= = \frac{1}{2}\iint_{x^2+y^2\leq 4 } x^2+y^2dxdy{ \color{blue} 二重积分轮换对称性}\\ =\frac{1}{2}\int_{0}^{2\pi}dθ\int_{0}^{2}r^3dr=4\pi\\ 1x=4y2z2 ,2x=4y2z2 xydydz=21xydydzYOZx=21xydydz=214x2y2 ydydz,f(x,y,z(x,y))dxdy=0xdzdx=0x2dxdy=x2+y24x2dxdy==21x2+y24x2+y2dxdy=2102πdθ02r3dr=4π

其他方面的连接:旋转体方程与体积的计算

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值