关于第一型曲线积分的奇偶对称和轮换对称的理解

想用奇偶对称的,首先判断曲线L关于x轴或y轴的对称。 

想用轮换对称的,首先判断曲线L关于y=x的对称。


奇偶对称 

f(-x,y)=-f(x,y)时,即L关于y轴对称时。

f(-x,y)想象为垂直XOY平面凸出来的部分(左半边),

-f(x,y)想象为垂直XOY平面凹进去的部分(右半边)。

就XOY平面来看,一凸一凹,合为0。

同理

f(-x,y)=f(x,y)时,即L关于y轴对称时。

f(-x,y)想象为垂直XOY平面凸出来的部分(左半边),

f(x,y)想象为垂直XOY平面凸出进去的部分(右半边)。

就XOY平面来看,一凸一凸,合为一凸之二倍。


轮换对称

如果L关于y=x对称,

那么 \oint (2x^2 + 3y^2)ds = \oint (3x^2 + 2y^2)ds 。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值