NOTE_北大Tensorflow_Chapter1

0.框架

  1. 准备数据
  2. 搭网络
  3. 参数优化
  4. 测试效果
  5. acc / loss 可视化

1.流程图

Created with Raphaël 2.3.0 1.导入模块 2.导入数据集 3.训练训练集并更新参数 4.测试测试集 5.epoch 次数完成? 6.acc / loss 可视化 yes no

1.导入模块

import tensorflow as tf
from sklearn import datasets
from matpotlib import pyplot as plt
import numpy as np
import time 

2.导入数据集

1.导数据
2.给训练集洗牌
3.分割为训练集和测试集
4.统一x_train、test的数据类型
5.slice使数据和标签一一对应和batch()
6.用tf.Variable使参数可训练
7.设置epoch和lr、优化器用到的参数等数据

常用函数

datasets.load_iris().data
datasets.load_iris().target
tf.random.set_seed(116)
np.random.seed(116)
np.random.shuffle(x_data)
数组变量[:-30]
数组变量[-30:]
tf.data.Dataset.from_tensor_slices(数据名).batch(32)
tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)
tf.Variable()

代码

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

3.epoch(4.训练训练集及更新参数 and 5.测试测试集)

1.最外层 for epoch in range(epoch):循环

2.测试集将所有batch循环完毕,每一个batch更新一次参数(with(1.求y。2.把y带入激活函数 。3.将已有标签转换为独热码。4.计算loss函数)-> 求 w1 和 b1 等偏导 -> 不同的优化器更新 (优化器:计算梯度下降法 ))

3.用测试集测试参数:

  1. 使用更新后的参数求y。
  2. y代入激活函数。
  3. 返回最大值索引。
  4. 将最大值索引转换为和标签相同的数据类型。
  5. 和标签比较并转换标签结果为int型。
  6. 将每个batch中的correct数加起来。
  7. 将所有batch中的correct数加起来。
  8. 总样本数,也就是x_test的行数,shape[0]返回变量的行数。

4.进行下一epoch,直到大循环完成

常用函数

for epoch in range(epoch):
for step, (x_train, y_train) in enumerate(train_db):
with tf.GradientTape() as tape:
tf.matmul(x_train, w1)
tf.nn.softmax(y)
tf.one_hot(y_train, depth=3)
tf.square(y_ - y)
tf.sqrt()
tf.reduce_mean()#无论输入是几维张量,输出一定为0维张量(一个数)
tf.reduce_sum()
tf.argmax(, axis=)#axis= 1 or 0
函数.numpy()
tape.gradient(loss, [w1, b1])
tf.pow(beta1, int(global_step))
变量名.assign_sub()
数组名.append()
数组名.shape[0]#返回行数

代码

for epoch in range(epoch):  # 数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别的循环 ,每个step循环一个batch
 ############################################################    
        global_step += 1
 ############################################################
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

#########################################################
 # adam
        m_w = beta1 * m_w + (1 - beta1) * grads[0]
        m_b = beta1 * m_b + (1 - beta1) * grads[1]
        v_w = beta2 * v_w + (1 - beta2) * tf.square(grads[0])
        v_b = beta2 * v_b + (1 - beta2) * tf.square(grads[1])

        m_w_correction = m_w / (1 - tf.pow(beta1, int(global_step)))
        m_b_correction = m_b / (1 - tf.pow(beta1, int(global_step)))
        v_w_correction = v_w / (1 - tf.pow(beta2, int(global_step)))
        v_b_correction = v_b / (1 - tf.pow(beta2, int(global_step)))

        w1.assign_sub(lr * m_w_correction / tf.sqrt(v_w_correction))
        b1.assign_sub(lr * m_b_correction / tf.sqrt(v_b_correction))
#########################################################

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")
total_time = time.time() - now_time  ##3##
print("total_time", total_time)  ##4##

4.acc / loss 可视化

链接: 图表绘制

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
# 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.plot(train_loss_results, label="$Loss$") 
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值