Yolo数据集按比例划分,其中一个必须修改的地方,一个需要注意的地方,还有就是要注意原始图像所在的子目录里只能存在图像格式的文件,不能有其他格式的文件
import os # 用于处理文件路径、创建目录等操作
import random # 用于生成随机数种子、打乱列表等操作
import shutil # 用于生成随机数种子、打乱列表等操作
# 设置随机数种子
random.seed(123)
# 定义文件夹路径(需要按照自己文件目录修改)
image_dir = 'path/to/images' # 原始图像所在的子目录
label_dir = 'path/to/lables' # 原始标签所在的子目录
output_dir = 'yolo_dataset' # 处理后的数据集输出目录
# 定义训练集、验证集和测试集比例(根据自己的需求修改,可改可不改)
train_ratio = 0.7 # 训练集比例
valid_ratio = 0.15 # 验证集比例
test_ratio = 0.15 # 测试集比例
# 获取所有图像文件和标签文件的文件名(不包括文件扩展名)
image_filenames = [os.path.splitext(f)[0] for f in os.listdir(image_dir)] # 提取所有图像文件的文件名列表
label_filenames = [os.path.splitext(f)[0] for f in os.listdir(label_dir)] # 提取所有标签文件的文件名列表
# 随机打乱文件名列表
random.shuffle(image_filenames) # 打乱图像文件的文件名列表
# 计算训练集、验证集和测试集的数量
total_count = len(image_filenames) # 总文件数
train_count = int(total_count * train_ratio) # 训练集文件数
valid_count = int(total_count * valid_ratio) # 验证集文件数
test_count = total_count - train_count - valid_count # 测试集文件数
# 定义输出文件夹路径
train_image_dir = os.path.join(output_dir, 'train', 'images') # 训练集图像输出目录
train_label_dir = os.path.join(output_dir, 'train', 'labels') # 训练集标签输出目录
valid_image_dir = os.path.join(output_dir, 'valid', 'images') # 验证集图像输出目录
valid_label_dir = os.path.join(output_dir, 'valid', 'labels') # 验证集标签输出目录
test_image_dir = os.path.join(output_dir, 'test', 'images') # 测试集图像输出目录
test_label_dir = os.path.join(output_dir, 'test', 'labels') # 测试集标签输出目录
# 创建输出文件夹
os.makedirs(train_image_dir, exist_ok=True) # 创建训练集图像输出目录
os.makedirs(train_label_dir, exist_ok=True) # 创建训练集标签输出目录
os.makedirs(valid_image_dir, exist_ok=True) # 创建验证集图像输出目录
os.makedirs(valid_label_dir, exist_ok=True) # 创建验证集标签输出目录
os.makedirs(test_image_dir, exist_ok=True) # 创建测试集图像输出目录
os.makedirs(test_label_dir, exist_ok=True) # 创建测试集标签输出目录
# 将图像和标签文件划分到不同的数据集中
for i, filename in enumerate(image_filenames):
# 如果文件数量小于训练数据集大小,则将文件复制到训练数据集目录中
if i < train_count:
output_image_dir = train_image_dir
output_label_dir = train_label_dir
# 如果文件数量小于训练数据集大小+验证数据集大小,则将文件复制到验证数据集目录中
elif i < train_count + valid_count:
output_image_dir = valid_image_dir
output_label_dir = valid_label_dir
# 否则,将文件复制到测试数据集目录中
else:
output_image_dir = test_image_dir
output_label_dir = test_label_dir
# 复制图像文件(注意是否为jpg txt保持一致)
src_image_path = os.path.join(image_dir, filename + '.jpg') # 获取图像文件的源路径
dst_image_path = os.path.join(output_image_dir, filename + '.jpg') # 获取图像文件的目标路径
shutil.copy(src_image_path, dst_image_path) # 复制图像文件到目标路径
# 复制标签文件
src_label_path = os.path.join(label_dir, filename + '.txt') # 获取标签文件的源路径
dst_label_path = os.path.join(output_label_dir, filename + '.txt') # 获取标签文件的目标路径
shutil.copy(src_label_path, dst_label_path) # 复制标签文件到目标路径