Keras深度学习实战(8)——使用数据增强提高神经网络性能
0. 前言
根据经验,我们知道对于给定的图像,即使我们平移,旋转或缩放图像,图像的标签也将保持不变。数据增强是从给定的图像集中创建更多图像的一种方法,即通过旋转,平移或缩放它们并将它们映射到原始图像的标签,以扩充数据集,通过增加训练数据集的数据量能够提高神经网络的模型性能。
在我们的认知中:即使图像稍微旋转或图像中的人从图像的中间移至图像的最右侧,该图像的分类标签仍然不会改变。因此,我们能够通过旋转和平移原始图像来创建更多训练数据,而每个图像相对应的标签并不会改变。
1. 数据集与模型分析
1.1 数据集介绍
在本节中,我们将研究 CIFAR-10
数据集,CIFAR-10
数据集中的图片有 10
个类别,每张图片均为 32x32
的彩色图像,每个类别有 6000
个图像。因此,共有 50000
个训练图像和 10000
个测试图像。类别标签分别为 plane
、car
、bird
、cat
、deer
、