Keras深度学习实战——使用卷积神经网络实现性别分类
0. 前言
在《卷积神经网络详解与实现》中,我们了解了卷积神经网络 (Convolutional Neural Network
, CNN
) 的工作原理以及 CNN
模型在解决图像识别问题中的优越性。在本节中,我们将通过构建性别分类模型来验证 CNN
模型性能,从而进一步加深对 CNN
工作原理的了解。
1. 数据集与模型分析
首先,我们需要了解本节用于性别分类的数据集,数据集取自 Celeb A,可以自行构建数据集,也可以下载使用此数据集,提取码:nql9
。CelebA
是一个大规模的人脸属性数据集,其中包含超过 20
万张名人图像,每张图像有 40
个属性注释。