Keras深度学习实战——使用卷积神经网络实现性别分类

本文介绍了使用Keras构建卷积神经网络(CNN)进行性别分类的实践过程。通过Celeb A数据集,创建了一个简单的CNN模型,实现了约90%的准确率。讨论了数据预处理、模型构建、编译和训练,以及可能的优化策略。
摘要由CSDN通过智能技术生成

Keras深度学习实战——使用卷积神经网络实现性别分类

0. 前言

《卷积神经网络详解与实现》中,我们了解了卷积神经网络 (Convolutional Neural Network, CNN) 的工作原理以及 CNN 模型在解决图像识别问题中的优越性。在本节中,我们将通过构建性别分类模型来验证 CNN 模型性能,从而进一步加深对 CNN 工作原理的了解。

1. 数据集与模型分析

首先,我们需要了解本节用于性别分类的数据集,数据集取自 Celeb A,可以自行构建数据集,也可以下载使用此数据集,提取码:nql9CelebA 是一个大规模的人脸属性数据集,其中包含超过 20 万张名人图像,每张图像有 40 个属性注释。

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值