遗传算法与深度学习实战(11)——遗传编程详解与实现
0. 前言
我们已经使用 DEAP
开发了各种问题的遗传算法 (Genetic Algorithms
, GA
) 解决方案。接下来,我们将使用 DEAP
来探索 GA
的子集,遗传编程 (Genetic Programming
, GP
)。GP
遵循与 GA
的相同原则,并采用许多相同的遗传算子。GA
和 GP
之间的关键区别在于基因或染色体的结构以及如何评估适应度,遗传编程和基因表达式编程 (Gene Expression Programming
, GEP
) 可以用于解决各种自动化和控制问题。在本节中,我们将介绍如何使用遗传编程来解决回归问题。GEP
也可以应用于从优化到搜索的其他问题。但回归和深度学习 ( Deep learning
, DL
) 更相关,我们可以使用类似 DL
的方式解决相同的问题。
1. 遗传编程原理
遗传编程 (Genetic Programming
, GP
) 是遗传算法的一种特殊形式。在这种特殊形式下,候选