遗传算法与深度学习实战(11)——遗传编程详解与实现

0. 前言

我们已经使用 DEAP 开发了各种问题的遗传算法 (Genetic Algorithms, GA) 解决方案。接下来,我们将使用 DEAP 来探索 GA 的子集,遗传编程 (Genetic Programming, GP)。GP 遵循与 GA 的相同原则,并采用许多相同的遗传算子。GAGP 之间的关键区别在于基因或染色体的结构以及如何评估适应度,遗传编程和基因表达式编程 (Gene Expression Programming, GEP) 可以用于解决各种自动化和控制问题。在本节中,我们将介绍如何使用遗传编程来解决回归问题。GEP 也可以应用于从优化到搜索的其他问题。但回归和深度学习 ( Deep learning, DL) 更相关,我们可以使用类似 DL 的方式解决相同的问题。

1. 遗传编程原理

遗传编程 (Genetic Programming, GP) 是遗传算法的一种特殊形式。在这种特殊形式下,候选

评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值