Transformer实战(3)——从词袋模型到Transformer:NLP技术演进
0. 前言
在过去数年间,自然语言处理 (Natural Language Processing, NLP) 领域已经取得了突破性进展。经历了多个不同的范式,进入了 Transformer 架构时代。我们能够更加有效地表示单词或句子,从而解决 NLP 任务。另一方面,文本输入与其他模态(如图像)的融合应用也逐渐兴起。对话式人工智能 (Artificial Intelligence, AI) 迎来了一个新的时代,开发出了能够像人类一样回答问题、描述概念,甚至一步步解决数学方程式的聊天机器人。毫无疑问,Transformer 模型是这一巨大进步的关键因素之一。
寻找不同自然语言之间、自然语言与图像之间、自然语言与编程语言之间,甚至更广泛地,自然语言与任何其他模态之间的跨语义理解,为我们打开了一扇新大门,使我们能够将自然语言作为主要输入,执行人工智能领域中的许多复杂任务。最简单的例子是,通过简单描述我们想要在图片中寻找的内容,模型就能给出正确结果。

模型通过持续学习和改进,逐渐能够用于处理不同任务。最初,使用分布式语义和 n-gram 语言模型理解单词和文档的意义,这些方法存在一些局限性。另一方面,随着新的跨模态技术的兴起,新的语言模型训练方法,特别
订阅专栏 解锁全文
635

被折叠的 条评论
为什么被折叠?



