Transformer实战(3)——从词袋模型到Transformer:NLP技术演进

0. 前言

在过去数年间,自然语言处理 (Natural Language Processing, NLP) 领域已经取得了突破性进展。经历了多个不同的范式,进入了 Transformer 架构时代。我们能够更加有效地表示单词或句子,从而解决 NLP 任务。另一方面,文本输入与其他模态(如图像)的融合应用也逐渐兴起。对话式人工智能 (Artificial Intelligence, AI) 迎来了一个新的时代,开发出了能够像人类一样回答问题、描述概念,甚至一步步解决数学方程式的聊天机器人。毫无疑问,Transformer 模型是这一巨大进步的关键因素之一。
寻找不同自然语言之间、自然语言与图像之间、自然语言与编程语言之间,甚至更广泛地,自然语言与任何其他模态之间的跨语义理解,为我们打开了一扇新大门,使我们能够将自然语言作为主要输入,执行人工智能领域中的许多复杂任务。最简单的例子是,通过简单描述我们想要在图片中寻找的内容,模型就能给出正确结果。

多模态模型

模型通过持续学习和改进,逐渐能够用于处理不同任务。最初,使用分布式语义和 n-gram 语言模型理解单词和文档的意义,这些方法存在一些局限性。另一方面,随着新的跨模态技术的兴起,新的语言模型训练方法,特别

评论 81
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值