【风控】可解释机器学习之InterpretML
在金融风控领域,机器学习模型因其强大的预测能力而备受青睐。然而,随着模型复杂性的增加,模型的可解释性逐渐成为一个挑战。监管要求、业务逻辑的透明度以及对模型决策的信任度,都迫切需要我们能够清晰地解释模型的每一个预测。这就是InterpretML发挥作用的地方——一个专注于提高机器学习模型可解释性的开源工具包。
InterpretML,作为微软推出的可解释人工智能(XAI)工具集的一部分,提供了一套全面的框架,帮助开发者理解和解释任何机器学习模型的决策过程。它通过可视化和模型无关的方法,使得即使是最复杂的模型也能变得透明和易于理解。在本篇博客中,我们将深入探索InterpretML的核心功能,演示如何使用它来增强风控模型的可解释性,并讨论它在金融领域风控建模中的应用价值。通过本篇博客,你将了解到如何借助InterpretML,让机器学习模型在风控领域更加可靠和透明。
文章目录
一、InterpretML是什么
InterpretML官网
InterpretML是一个开源库,用于训练和解释机器学习模型。其核心目标是提供易于使用的接口和可视化工具,帮助用户理解模型的预测原因和行为。这种透明度尤其对于在高风险和监管环境中运用机器学习模型的场景非常重要。以下是InterpretML的一些主要特性和功能:
1.多种解释模型:
InterpretML提供了多种模型解释工具,支持从简单的线性模型到复杂的集成模型等多种类型。这包括全局解释(整个模型的解释)和局部解释(单个预测的解释)。
2.支持不同类型的解释器:
包括但不限于以下解释器:
- EBM (Explainable Boosting Machine):这是interpret包的核心,是一种基于梯度提升机的模型,设计为高度可解释。
- SHAP (SHapley Additive exPlanations):利用博弈论的概念,将每个特征对预测的贡献分解开来。
- LIME (Local Interpretable Model-agnostic Explanations):通过在预测点附近采样生成局部模型,解释复杂模型的预测。
- Partial Dependence Plot (PDP):显示一个或两个特征变化时模型预测的平均变化情况。
- Decision Tree Surrogate:构建一个决策树来近似模仿黑箱模型的行为。
3.易用性和可视化:
InterpretML包含了丰富的可视化功能,允许用户直观地看到模型的工作原理和每个特征如何影响预测结果。这包括数据探索、模型性能评估和特征影响的可视化。
4.模型无关性:
一部分解释器支持模型无关性,意味着它们可以用于任何类型的机器学习模型。例如,SHAP和LIME就可以应用于任何黑箱模型,提供预测的解释。
5.集成和易用性:
InterpretML可以与常用的机器学习框架如scikit-learn、TensorFlow等无缝集成,
二、Glassbox 与 Blackbox
在InterpretML库中,术语"Glassbox"和"Blackbox"模型表示两种